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We develop a unified framework to classify topological defects in insulators and superconductors described
by spatially modulated Bloch and Bogoliubov de Gennes Hamiltonians. We consider Hamiltonians H�k ,r� that
vary slowly with adiabatic parameters r surrounding the defect and belong to any of the ten symmetry classes
defined by time-reversal symmetry and particle-hole symmetry. The topological classes for such defects are
identified and explicit formulas for the topological invariants are presented. We introduce a generalization of
the bulk-boundary correspondence that relates the topological classes to defect Hamiltonians to the presence of
protected gapless modes at the defect. Many examples of line and point defects in three-dimensional systems
will be discussed. These can host one dimensional chiral Dirac fermions, helical Dirac fermions, chiral Majo-
rana fermions, and helical Majorana fermions, as well as zero-dimensional chiral and Majorana zero modes.
This approach can also be used to classify temporal pumping cycles, such as the Thouless charge pump, as well
as a fermion parity pump, which is related to the Ising non-Abelian statistics of defects that support Majorana
zero modes.
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I. INTRODUCTION

The classification of electronic phases according to topo-
logical invariants is a powerful tool for understanding and
predicting the behavior of matter. This approach was pio-
neered by Thouless, et al.1 �TKNN�, who identified the inte-
ger topological invariant characterizing the two-dimensional
�2D� integer quantum-Hall state. The TKNN invariant n
gives the Hall conductivity �xy =ne2 /h and characterizes the
Bloch Hamiltonian H�k�, defined as a function of k in the
magnetic Brillouin zone. It may be expressed as the first
Chern number associated with the Bloch wave functions of
the occupied states. A fundamental consequence of this topo-
logical classification is the bulk-boundary correspondence,
which relates the topological class of the bulk system to the
number of gapless chiral fermion edge states on the sample
boundary.

Recent interest in topological states2–4 has been stimu-
lated by the realization that the combination of time-reversal
symmetry and the spin-orbit interaction can lead to topologi-
cal insulating electronic phases5–10 and by the prediction11–13

and observation14–26 of these phases in real materials. A to-
pological insulator is a two- or three-dimensional material
with a bulk energy gap that has gapless modes on the edge or
surface that are protected by time-reversal symmetry. The
bulk boundary correspondence relates these modes to a Z2
topological invariant characterizing time-reversal invariant
Bloch Hamiltonians. Signatures of these protected boundary
modes have been observed in transport experiments on 2D
HgCdTe quantum wells14–16 and in photoemission and scan-
ning tunnel microscope experiments on three-dimensional
�3D� crystals of Bi1−xSbx,

17–19 Bi2Se3,20 Bi2Te3,22,23,25 and
Sb2Te3.26 Topological insulator behavior has also been pre-
dicted in other classes of materials with strong spin-orbit
interactions.27–33

Superconductors, described within a Bogoliubov de
Gennes �BdG� framework can similarly be classified
topologically.34–37 The Bloch-BdG Hamiltonian HBdG�k� has

a structure similar to an ordinary Bloch Hamiltonian, except
that it has an exact particle-hole symmetry that reflects the
particle-hole redundancy inherent to the BdG theory. Topo-
logical superconductors are also characterized by gapless
boundary modes. However, due to the particle-hole redun-
dancy, the boundary excitations are Majorana fermions. The
simplest model topological superconductor is a weakly
paired spinless p wave superconductor in one-dimensional
�1D�,38 which has zero-energy Majorana bound states at its
ends. In 2D, a weakly paired px+ ipy superconductor has a
chiral Majorana edge state.39 Sr2RuO4 is believed to exhibit a
triplet px+ ipy state.40 The spin degeneracy, however, leads to
a doubling of the Majorana edge states. Though undoubled
topological superconductors remain to be discovered experi-
mentally, superfluid 3He B is a related topological
phase34,35,37,41,42 and is predicted to exhibit 2D gapless Ma-
jorana modes on its surface. Related ideas have also been
used to topologically classify Fermi surfaces.43

Topological insulators and superconductors fit together
into an elegant mathematical framework that generalizes the
above classifications.35,36 The topological classification of a
general Bloch or BdG theory is specified by the dimension d
and the ten Altland-Zirnbauer symmetry classes44 character-
izing the presence or absence of particle-hole, time-reversal,
and/or chiral symmetry. The topological classifications,
given by Z, Z2, or 0 show a regular pattern as a function of
symmetry class and d, and can be arranged into a periodic
table of topological insulators and superconductors. Each
nontrivial entry in the table is predicted, via the bulk-
boundary correspondence, to have gapless boundary states.

Topologically protected zero modes and gapless states can
also occur at topological defects, and have deep implications
in both field theory and condensed matter physics.41,45–47 A
simple example is the zero-energy Majorana mode that oc-
curs at a vortex in a px+ ipy superconductor.39 Similar Majo-
rana bound states can be engineered using three dimensional
heterostructures that combine ordinary superconductors and
topological insulators,48 as well as semiconductor structures
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that combine superconductivity, magnetism, and strong spin-
orbit interactions.49–52 Recently, we showed that the exis-
tence of a Majorana bound state at a point defect in a three
dimensional Bogoliubov de Gennes theory is related to a Z2
topological invariant that characterizes a family of Bogoliu-
bov de Gennes Hamiltonians HBdG�k ,r� defined for r on a
surface surrounding the defect.53 This suggests that a more
general formulation of topological defects and their corre-
sponding gapless modes should be possible.

In this paper we develop a general theory of topological
defects and their associated gapless modes in Bloch and
Bloch-BdG theories in all symmetry classes. As in Ref. 53,
we assume that far away from the defect the Hamiltonian
varies slowly in real space, allowing us to consider adiabatic
changes in the Hamiltonian as a function of the real space
position r. We thus seek to classify Hamiltonians H�k ,r�,
where k is defined in a d-dimensional Brillouin zone �a torus
Td�, and r is defined on a D-dimensional surface SD sur-
rounding the defect. A similar approach can be used to clas-
sify cyclic temporal variations in the Hamiltonian, which de-
fine adiabatic pumping cycles. Hereafter we will drop the
BdG subscript on the Hamiltonian with the understanding
that the symmetry class dictates whether it is a Bloch or BdG
Hamiltonian.

In Fig. 1 we illustrate the types of topological defects that
can occur in d=1, 2, or 3. For D=0 we regard S0 as two
points ��−1,+1��. Our topological classification then classi-
fies the difference of H�k ,+1� and H�k ,−1�. A nontrivial
difference corresponds to an interface between two topologi-
cally distinct phases. For D=1 the one parameter families of
Hamiltonians describe line defects in d=3 and point defects
in d=2. For d=1 it could correspond to an adiabatic tempo-
ral cycle H�k , t�. Similarly for D=2, the two parameter fam-
ily describes a point defect for d=3 or an adiabatic cycle for
a point defects in d=2.

Classifying the D parameter families of d-dimensional
Bloch-BdG Hamiltonians subject to symmetries leads to a
generalization of the periodic table discussed above. The
original table corresponds to D=0. For D�0 we find that for
a given symmetry class the topological classification �Z, Z2,
or 0� depends only on

� = d − D . �1.1�

Thus, all line defects with �=2 have the same topological
classification, irrespective of d, as do point defects with �
=1 and pumping cycles with �=0. Though the classifications
depend only on �, the formulas for the topological invariants
depend on both d and D.

This topological classification of H�k ,r� suggests a gen-
eralization of the bulk-boundary correspondence that relates
the topological class of the Hamiltonian characterizing the
defect to the structure of the protected modes associated with
the defect. This has a structure reminiscent of a mathematical
index theorem54 that relates a topological index to an analyti-
cal index that counts the number of zero modes.41,45,46,55–59

In this paper we will not attempt to prove the index theorem.
Rather, we will observe that the topological classes for
H�k ,r� coincide with the expected classes of gapless defect
modes. In this regards the dependence of the classification on
� in Eq. �1.1� is to be expected. For example, a point defect
at the end of a one-dimensional system ��=1−0� has the
same classification as a point defects in two dimensions ��
=2−1� and three dimensions ��=3−2�.

We will begin in Sec. II by describing the generalized
periodic table. We will start with a review of the Altland
Zirnbauer symmetry classes44 and a summary of the proper-
ties of the table. In Appendix A we will justify this generali-
zation of the table by introducing a set of mathematical map-
pings that relate Hamiltonians in different dimensions and
different symmetry classes. In addition to establishing that
the classifications depend only on �=d−D, these mappings
allow other features of the table, already present for D=0 to
be easily understood, such as the pattern in which the clas-
sifications vary as a function of symmetry class as well as the
Bott periodicity of the classes as a function of d.

In Secs. III and IV we will outline the physical conse-
quences of this theory by discussing a number of examples
of line and point defects in different symmetry classes and
dimensions. The simplest example is that of a line defect in a
3D system with no symmetries. In Sec. III A we will show
that the presence of a 1D chiral Dirac fermion mode �analo-
gous to an integer quantum-Hall edge state� on the defect is
associated with an integer topological invariant that may be
interpreted as the winding number of the “�” term that char-
acterizes the magnetoelectric polarizability.10 This descrip-
tion unifies a number of methods for “engineering” chiral
Dirac fermions, which will be described in several illustra-
tive examples.

Related topological invariants and illustrative examples
will be presented in Secs. III B–III E for line defects in other
symmetry classes that are associated with gapless 1D helical
Dirac fermions, 1D chiral Majorana fermions, and 1D helical
Majorana fermions. In Sec. IV we will consider point defects
in 1D models with chiral symmetry such as the Jackiw-Rebbi
model45 or the Su, Schrieffer, Heeger model,47 and in super-
conductors without chiral symmetry that exhibit Majorana
bound states or Majorana doublets. These will also be related
to the early work of Jackiw and Rossi46 on Majorana modes
at point defects in a model with chiral symmetry.

t

t

d=1 d=2 d=3

D=0

D=1

D=2

FIG. 1. �Color online� Topological defects characterized by a D
parameter family of d-dimensional Bloch-BdG Hamiltonians. Line
defects correspond to d−D=2 while point defects correspond to d
−D=1. Temporal cycles for point defects correspond to d−D=0.
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Finally, in Sec. V we will regard r as including a temporal
variable, and apply the considerations in this paper to clas-
sify cyclic pumping processes. The Thouless charge
pump60,61 corresponds to a nontrivial cycle in a system with
no symmetries and �=0 �d=D=1�. A similar pumping sce-
nario can be applied to superconductors and defines a fer-
mion parity pump. This, in turn, is related to the non-Abelian
statistics of Ising anyons and provides a framework for un-
derstanding braidless operations on systems of three-
dimensional superconductors hosting Majorana fermion
bound states. Details of several technical calculations can be
found in the Appendices. An interesting recent preprint by
Freedman et al.,62 which appeared when this manuscript was
in its final stages discusses some aspects of the classification
of topological defects in connection with a rigorous theory of
non-Abelian statistics in higher dimensions.

II. PERIODIC TABLE FOR DEFECT CLASSIFICATION

Table I shows the generalized periodic table for the clas-
sification of topological defects in insulators and supercon-
ductors. It describes the equivalence classes of Hamiltonians
H�k ,r�, that can be continuously deformed into one another
without closing the energy gap, subject to constraints of
particle-hole and/or time-reversal symmetry. These are map-
pings from a base space defined by �k ,r� to a classifying
space, which characterizes the set of gapped Hamiltonians.
In order to explain the table, we need to describe �i� the
symmetry classes, �ii� the base space, �iii� the classifying
space, and �iv� the notion of stable equivalence. The repeat-
ing patterns in the table will be discussed in Sec. II C. Much
of this section is a review of material in Refs. 35 and 36.
What is new is the extension to D�0.

A. Symmetry classes

The presence or absence of time reversal symmetry,
particle-hole symmetry, and/or chiral symmetry define the
ten Altland-Zirnbauer symmetry classes.44 Time-reversal
symmetry implies that

H�k,r� = �H�− k,r��−1, �2.1�

where the antiunitary time reversal operator may be written
�=ei�Sy/	K. Sy is the spin and K is complex conjugation. For
spin-1/2 fermions, �2=−1, which leads to Kramers theorem.
In the absence of a spin-orbit interaction, the extra invariance
of the Hamiltonian under rotations in spin space allows an
additional time-reversal operator ��=K to be defined, which
satisfies ��2=+1.

Particle-hole symmetry is expressed by

H�k,r� = − 
H�− k,r�
−1, �2.2�

where 
 is the antiunitary particle-hole operator. Fundamen-
tally, 
2=+1. However, as was the case for �, the absence
of spin-orbit interactions introduces an additional particle-
hole symmetry, which can satisfy 
2=−1.

Finally, chiral symmetry is expressed by a unitary opera-
tor �, satisfying

H�k,r� = − �H�k,r��−1. �2.3�

A theory with both particle-hole and time-reversal symme-
tries automatically has a chiral symmetry �=ei��
. The
phase � can be chosen so that �2=1.

Specifying �2=0 , 1, 
2=0 , 1, and �2=0 ,1 �here 0
denotes the absence of symmetry� defines the ten Altland-
Zirnbauer symmetry classes. They can be divided into two
groups: eight real classes that have anti unitary symmetries
� and or 
 plus two complex classes that do not have anti
unitary symmetries. Altland and Zirnbauer’s notation for
these classes, which is based on Cartan’s classification of
symmetric spaces, is shown in the left-hand part of Table I.

To appreciate the mathematical structure of the eight real
symmetry classes it is helpful to picture them on an 8 h
“clock,” as shown in Fig. 2. The x and y axes of the clock
represent the values of 
2 and �2. The “time” on the clock
can be represented by an integer s defined modulo 8.
Kitaev36 used a slightly different notation to label the sym-
metry classes. In his formulation, class D is described by a
real Clifford algebra with no constraints, and in the other

TABLE I. Periodic table for the classification of topological defects in insulators and superconductors. The rows correspond to the
different Altland Zirnbauer �AZ� symmetry classes while the columns distinguish different dimensionalities, which depend only on �=d
−D.

Symmetry �=d−D

s AZ �2 
2 �2 0 1 2 3 4 5 6 7

0 A 0 0 0 Z 0 Z 0 Z 0 Z 0

1 AIII 0 0 1 0 Z 0 Z 0 Z 0 Z

0 AI 1 0 0 Z 0 0 0 2Z 0 Z2 Z2

1 BDI 1 1 1 Z2 Z 0 0 0 2Z 0 Z2

2 D 0 1 0 Z2 Z2 Z 0 0 0 2Z 0

3 DIII −1 1 1 0 Z2 Z2 Z 0 0 0 2Z
4 AII −1 0 0 2Z 0 Z2 Z2 Z 0 0 0

5 CII −1 −1 1 0 2Z 0 Z2 Z2 Z 0 0

6 C 0 −1 0 0 0 2Z 0 Z2 Z2 Z 0

7 CI 1 −1 1 0 0 0 2Z 0 Z2 Z2 Z
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classes Clifford algebra elements are constrained to anticom-
mute with q positive generators. The two formulations are
related by s=q+2 mod 8. The complex symmetry classes
can similarly be indexed by an integer s defined modulo 2.
For all classes, the presence of chiral symmetry is associated
with odd s.

B. Base space, classifying space and stable equivalence

The Hamiltonian is defined on a base space composed of
momentum k, defined in a d-dimensional Brillouin zone Td

and real-space degrees of freedom r in a sphere SD �or
SD−1�S1 for an adiabatic cycle�. The total base space is
therefore Td�SD �or Td�SD−1�S1�. As in Ref. 36, we will
simplify the topological classification by treating the base
space as a sphere Sd+D. The “strong” topological invariants
that characterize the sphere will also characterize Td�SD.
However, there may be additional topological structure in
Td�SD that is absent in Sd+D. These correspond to “weak”
topological invariants. For D=0 these arise in layered struc-
tures. A weak topological insulator, for example, can be un-
derstood as a layered two dimensional topological insulator.
There are similar layered quantum-Hall states. For D�0,
then there will also be a weak invariant if the Hamiltonian
H�k ,r0� for fixed r=r0 is topologically nontrivial. As is the
case for the classification of bulk phases D=0, we expect
that the topologically protected gapless defect modes are as-
sociated with the strong topological invariants.

The set of Hamiltonians that preserve the energy gap
separating positive and negative energy states can be simpli-
fied without losing any topological information. Consider the
retraction of the original Hamiltonian H�k ,r� to a simpler
Hamiltonian whose eigenvalue spectrum is “flattened” so
that the positive- and negative-energy states all have the
same energy E0. The flattened Hamiltonian is then speci-
fied the set of all n eigenvectors �defining a U�n� matrix�
modulo unitary rotations within the k conduction bands or
the n−k valence bands. The flattened Hamiltonian can thus
be identified with a point in the Grassmanian manifold

Gn,k = U�n�/U�k� � U�n − k� . �2.4�

It is useful to broaden the notion of topological equiva-
lence to allow for the presence of extra trivial energy bands.

Two families of Hamiltonians are stably equivalent if they
can be deformed into one another after adding an arbitrary
number of trivial bands. Thus, trivial insulators with different
numbers of core energy levels are stably equivalent. Stable
equivalence can be implemented by considering an expanded
classifying space that includes an infinite number of extra
conduction and valence bands, C0=U /U�U��k=0

� G�,k.
With this notion of stable equivalence, the equivalence

classes of Hamiltonians H�k ,r� can be formally added and
subtracted. The addition of two classes, denoted �H1�
+ �H2� is formed by simply combining two independent
Hamiltonians into a single Hamiltonian given by the matrix
direct sum, �H1 � H2�. Additive inverses are constructed
through reversing conduction and valence bands, �H1�
− �H2�= �H1 � −H2�. �H � −H� is guaranteed to the be trivial
class �0�. Because of this property, the stable equivalence
classes form an Abelian group, which is the key element of K
theory.63–65

Symmetries impose constraints on the classifying space.
For the symmetry classes with chiral symmetry, Eq. �2.3�
restricts n=2k and the classifying space to a subset C1
=U����U /U�U. The antiunitary symmetries in Eqs. �2.1�
and �2.2� impose further constraints. At the special points
where k and −k coincide, the allowed Hamiltonians are de-
scribed by the 8 classifying spaces Rq of real K theory.

C. Properties of the periodic table

For a given symmetry class s, the topological classifica-
tion of defects is given by the set of stable equivalence
classes of maps from the base space �k ,r��SD+d to the clas-
sifying space, subject to the symmetry constraints. These
form the K group, which we denote as KC�s ;D ,d� for the
complex symmetry classes and KR�s ;D ,d� for the real sym-
metry classes. These are listed in Table I.

Table I exhibits many remarkable patterns. Many can be
understood from the following basic periodicities:

KF�s;D,d + 1� = KF�s − 1;D,d� , �2.5�

KF�s;D + 1,d� = KF�s + 1;D,d� . �2.6�

Here s is understood to be defined modulo 2 for F=C and
modulo 8 for F=R. We will establish these identities math-
ematically in Appendix A. The basic idea is to start with
some Hamiltonian in some symmetry class s and dimension-
alities D and d. It is then possible to explicitly construct two
new Hamiltonians in one higher dimension which have ei-
ther �i� d→d+1 or �ii� D→D+1. These new Hamiltonians
belongs to new symmetry classes that are shifted by 1 “hour”
on the symmetry clock and characterized by �i� s→s+1 or
�ii� s→s−1. We then go on to show that this construction
defines a 1–1 correspondence between the equivalence
classes of Hamiltonians with the new and old symmetry
classes and dimensions, thereby establishing Eqs. �2.5� and
�2.6�.

The periodicities in Eqs. �2.5� and �2.6� have a number of
consequences. The most important for our present purposes
is they can be combined to give

2

107

6

5 4 3

AI BDI

D

DIIIAIICII

C

CI

Θ2

Ξ2

FIG. 2. The eight real symmetry classes that involve the anti-
unitary symmetries � �time reversal� and/or 
 �particle hole� are
specified by the values of �2= 1 and 
2= 1. They can be vi-
sualized on an eight-hour “clock.”
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KF�s;D + 1,d + 1� = KF�s;D,d� . �2.7�

This �1,1� periodicity shows that the dependence on the di-
mensions d and D only occurs via �=d−D. Thus the depen-
dence of the classifications on D can be deduced from the
table for D=0. This is one of our central results.

In addition, the periodicities in Eqs. �2.5� and �2.6� ex-
plain other features of the table that are already present for
D=0. In particular, the fact that s is defined modulo 2 �8� for
the complex �real� classes leads directly to the Bott period-
icity of the dependence of the classifications on d

KC�s;D,d + 2� = KC�s;D,d� , �2.8�

KR�s;D,d + 8� = KR�s;D,d� . �2.9�

Moreover, Eqs. �2.5� and �2.6� show that Ka�s ;D ,d� depends
only on d−D−s. This explains the diagonal pattern in Table
I, in which the dependence of the classification on d is re-
peated in successive symmetry classes. Thus, the entire table
could be deduced from a single row.

Equations �2.5� and �2.6� do not explain the pattern of
classifications within a single row. Since this is a well-
studied math problem there are many routes to the
answer.64,66,67 One approach is to notice that for d=0,
KF�s ,D ,0� is simply the Dth homotopy group of the appro-
priate classifying space which incorporates the symmetry
constraints. For example, for class BDI �s=1, 
2=+1, and
�2=+1� the classifying space is the orthogonal group O���.
Then, KR�1,D ,0�=�D�O����, which are well known. This
implies

KR�s;D,d� = �s+D−d−1�O���� . �2.10�

Additional insight can be obtained by examining the in-
terconnections between different elements of the table. For
example, the structure within a column can be analyzed by
considering the effect of “forgetting” symmetries. Hamilto-
nians belonging to the real chiral �nonchiral� classes are au-
tomatically in complex class AIII �A�. There are therefore K
group homomorphisms that send any real entries in Table I to
complex ones directly above. In particular, as detailed in
Appendix B this distinguishes the Z and 2Z entries, which
indicate the possible values of Chern numbers �or U�n�
winding numbers� for even �or odd� �. In addition, the di-
mensional reduction arguments given in Refs. 10 and 68 lead
to a dimensional hierarchy, which helps to explain the pattern
within a single row as a function of d.

III. LINE DEFECTS

Line defects can occur at the edge of a 2D system ��=2
−0� or in a 3D system ��=3−1�. From Table I, it can be seen
that there are five symmetry classes which can host non-
trivial line defects. These are expected to be associated with
gapless fermion modes bound to the defect. Table II lists
nontrivial classes, along with the character of the associated
gapless modes. In the following sections we will discuss
each of these cases, along with physical examples.

A. Class A: Chiral Dirac fermion

1. Topological invariant

A line defect in a generic 3D Bloch band theory with no
symmetries is associated with an integer topological invari-
ant. This determines the number of chiral Dirac fermion
modes associated with the defect. Since H�k ,r� is defined on
a compact four-dimensional space, this invariant is naturally
expressed as a second Chern number

n =
1

8�2�
T3�S1

Tr�F ∧ F� , �3.1�

where

F = dA + A ∧ A �3.2�

is the curvature form associated with the non-Abelian Ber-
ry’s connection Aij = 	ui 
duj� characterizing the valence-band
eigenstates 
uj�k ,s�� defined on the loop S1 parameterized by
s.

It is instructive to rewrite this as an integral over s of a
quantity associated with the local band structure. To this end,
it is useful to write Tr�F∧F�=dQ3, where the Chern-Simons
3 form is

Q3 = Tr�A ∧ dA +
2

3
A ∧ A ∧ A . �3.3�

Now divide the integration volume into thin slices, T3

��S1, where �S1 is the interval between s and s+�s. In
each slice, Stokes’ theorem may be used to write the integral
as a surface integral over the surfaces of the slice at s and
s+�s. In this manner, Eq. �3.1� may be written

n =
1

2�
�

S1
ds

d

ds
��s� , �3.4�

where

��s� =
1

4�
�

T3
Q3�k,s� . �3.5�

Equation �3.5� is precisely the Qi, Hughes, and Zhang
formula10 for the “�” term that characterizes the magneto-
electric response of a band insulator. �=0 for an ordinary
time reversal invariant insulator, and �=� in a strong topo-
logical insulator. If parity and time-reversal symmetry are
broken then � can have any intermediate value. We thus
conclude that the topological invariant associated with a line

TABLE II. Symmetry classes that support topologically non-
trivial line defects and their associated protected gapless modes.

Symmetry Topological classes 1D gapless Fermion modes

A Z Chiral Dirac

D Z Chiral Majorana

DIII Z2 Helical Majorana

AII Z2 Helical Dirac

C 2Z Chiral Dirac
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defect, which determines the number of chiral fermion
branches is given by the winding number of �. We now
consider several examples of 3D line defects that are associ-
ated with chiral Dirac fermions.

2. Dislocation in a 3D integer quantum-Hall state

A three-dimensional integer quantum-Hall state can be
thought of as a layered version of the two-dimensional inte-
ger quantum-Hall state. This can be understood most simply
by considering the extreme limit where the layers are com-
pletely decoupled 2D systems. A line dislocation, as shown
in Fig. 3 will then involve an edge of one of the planes and
be associated with a chiral fermion edge state. Clearly, the
chiral fermion mode will remain when the layers are
coupled, provided the bulk gap remains finite. Here we wish
to show how the topological invariant in Eq. �3.1� reflects
this fact.

On a loop surrounding the dislocation parameterized by
s� �0,1� we may consider a family of Hamiltonians H�k ,s�
given by the Hamiltonian of the original bulk crystal dis-
placed by a distance sB, where B is a lattice vector equal to
the Burgers vector of the defect. The corresponding Bloch
wave functions will thus be given by

umk,s�r� = umk
0 �r − sB� , �3.6�

where umk
0 �r� are Bloch functions for the original crystal. It

then follows that the Berry’s connection is

A = A0 + B · �k − ap�k��ds , �3.7�

where

Amn
0 �k� = 	umk

0 
�k
unk
0 � · dk

and

amn
p �k� = 	umk

0 
��r + k�
unk
0 � . �3.8�

With this definition, ap�k� is a periodic function: ap�k+G�
=ap�k� for any reciprocal lattice vector G.69

If the crystal is in a three dimensional quantum-Hall state,
then the nonzero first Chern number is an obstruction to
finding the globally continuous gauge necessary to evaluate
Eq. �3.5�. We therefore use Eq. �3.1�, which can be evaluated
by noting that

Tr�F ∧ F� = Tr�B · �2F0 ∧ dk − d�F0,ap�� ∧ ds� . �3.9�

Upon integrating Tr�F∧F� the total derivative term vanishes
due to the periodicity of ap. Evaluating the integral is then
straightforward. The integral over s trivially gives 1. We are
then left with

n =
1

2�
B · Gc, �3.10�

where

Gc =
1

2�
�

T3
dk ∧ Tr�F0� . �3.11�

Gc is a reciprocal lattice vector that corresponds to the triad
of Chern numbers that characterize a 3D system. For in-
stance, in a cubic system Gc= �2� /a��nx ,ny ,nz�, where, for
example nz= �2��−1�Tr�Fxy

0 �dkx∧dky, for any value of kz.
An equivalent formulation is to characterize the displaced

crystal in terms of �. Though Eq. �3.5� cannot be used, Eqs.
�3.1� and �3.4� can be used to implicitly define � up to an
arbitrary additive constant

��s� = sB · Gc. �3.12�

3. Topological insulator heterostructures

Another method for engineering chiral Dirac fermions is
use heterostructures that combine topological insulators and
magnetic materials. The simplest version is a topological in-
sulator coated with a magnetic film that opens a time-
reversal symmetry breaking energy gap at the surface. A do-
main wall is then associated with a chiral fermion mode. In
this section we will show how this structure, along with
some variants on the theme, fits into our general framework.
We first describe the structures qualitatively and then analyze
a model that describes them.

Figure 4 shows four possible configurations. Figures 4�a�
and 4�b� involve a topological insulator with magnetic mate-

s

B

FIG. 3. A line dislocation in a three-dimensional quantum-Hall
state characterized by Burgers vector B.

AF-I AF-I

TI θ = π

θ = −ε θ = +ε
F-I F-I

TI θ = π

θ = 0 θ = 0

(a) (b)

AF-TI AF-TI

I θ=0

θ = π−ε θ = π+ε
F-TI F-TI

I θ=0

θ = π θ = π

(c) (d)

FIG. 4. Heterostructure geometries for chiral Dirac fermions. �a�
and �b� show antiferromagnetic or ferromagnetic insulators on the
surface of a topological insulator with chiral Dirac fermions at a
domain wall. �c� and �d� show a domain wall in an antiferromag-
netic or ferromagnetic topological insulator. Chiral fermion modes
are present when the domain wall intersects the surface.
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rials on the surface. The magnetic material could be either
ferromagnetic or antiferromagnetic. We distinguish these two
cases based on whether inversion symmetry is broken or not.
Ferromagnetism does not violate inversion symmetry while
antiferromagnetism does �at least for inversion about the
middle of a bond�. This is relevant because �, discussed
above, is quantized unless both time reversal and inversion
symmetries are violated. Of course, for a noncentrosymmet-
ric crystal inversion is already broken so the distinction is
unnecessary.

Figure 4�a� shows a topological insulator capped with an-
tiferromagnetic insulators with �= � separated by a domain
wall. Around the junction where the three regions meet �
cycles between �, +�, and −�. Of course this interface struc-
ture falls outside the adiabatic regime that Eq. �3.5� is based
on. However, it is natural to expect that the physics would
not change if the interface was “smoothed out” with � taking
the shortest smooth path connecting its values on either side
of the interface.

Figure 4�b� shows a similar device with ferromagnetic
insulators, for which �=0 or �. In this case the adiabatic
assumption again breaks down, however, as emphasized in
Ref. 10, the appropriate way to think about the surface is that
� connects 0 and � along a path that is determined by the
sign of the induced gap, which in turn is related to the mag-
netization. In this sense, � cycles by 2� around the junction.

In Figs. 4�c� and 4�d� we consider topological insulators
which have a weak magnetic instability. If in addition to
time-reversal, inversion symmetry is broken, then ����.
Recently Li, Wang, Qi, and Zhang70 have considered such
materials in connection with a theory of a dynamical axion
and suggested that certain magnetically doped topological
insulators may exhibit this behavior. They referred to such
materials as topological magnetic insulators. We prefer to
call them magnetic topological insulators because as mag-
netic insulators they are topologically trivial. Rather, they are
topological insulators to which magnetism is added. Irre-
spective of the name, such materials would be extremely
interesting to study, and as we discuss below, may have im-
portant technological utility.

Figure 4�c� shows two antiferromagnetic topological insu-
lators with �=�� separated by a domain wall, and Fig.
4�d� shows a similar device with ferromagnetic topological
insulators. They form an interface with an insulator, which
could be vacuum. Under the same continuity assumptions as
above the junction where the domain wall meets the surface
will be associated with a chiral fermion mode. Like the struc-
ture in Fig. 4�a�, this may be interpreted as an edge state on
a domain wall between the “half-quantized” quantum-Hall
states of the topological insulator surfaces. However, an
equally valid interpretation is that the domain wall itself
forms a single two-dimensional integer quantum-Hall state
with an edge state. Our framework for topologically classi-
fying the line defects underlies the equivalence between
these two points of view.

Mong, Essen, and Moore71 have introduced a different
kind of antiferromagnetic topological insulator that relies on
the symmetry of time reversal combined with a lattice trans-
lation. Due to the necessity of translation symmetry, how-
ever, such a phase is not robust to disorder. They found that

chiral Dirac modes occur at certain step edges in such crys-
tals. These chiral modes can also be understood in terms of
the invariant in Eq. �3.1�. Note that these chiral modes sur-
vive in the presence of disorder even though the bulk state
does not. Thus, the chiral mode, protected by the strong in-
variant in Eq. �3.1�, is more robust than the bulk state that
gave rise to it.

If one imagines weakening the coupling between the two
antiferromagnetic topological insulators �using our terminol-
ogy, not that of Mong, et al.71� and taking them apart, then at
some point the chiral mode has to disappear. At that point,
rather than taking the “shortest path” between ��, � takes
a path that passes through 0. At the transition between the
“short-path” and the “long-path” regimes, the gap on the
domain wall must go to zero, allowing the chiral mode to
escape. This will have the character of a plateau transition in
the 2D integer quantum-Hall effect.

Structures involving magnetic topological insulators
would be extremely interesting to study because with them it
is possible to create chiral fermion states with a single ma-
terial. Indeed, one can imagine scenarios where a magnetic
memory, encoded in magnetic domains, could be read by
measuring the electrical transport in the domain wall chiral
fermions.

To model the chiral fermions in these structures we begin
with the simple three-dimensional model for trivial and to-
pological insulators considered in Ref. 10

H0 = v�x�� · k + �m + �
k
2��z. �3.13�

Here �� represents spin and �z describes an orbital degree of
freedom. m�0 describes the trivial insulator and m�0 de-
scribes the topological insulator. An interface where m
changes sign is then associated with gapless surface states.

Next consider time-reversal symmetry-breaking perturba-
tions, which could arise from exchange fields due to the pres-
ence of magnetic order. Two possibilities include

Haf = haf�y , �3.14�

H f = h� f · �� . �3.15�

Either haf or hf ,z will introduce a gap in the surface states but
they have different physical content. H0 has an inversion
symmetry given by H0�k�= PH0�−k�P with P=�z. Clearly,
H f respects this inversion symmetry. Haf does not respect P
but does respect P�. We therefore associate H f with ferro-
magnetic order and Haf with antiferromagnetic order.

Within the adiabatic approximation, the topological in-
variant in Eq. �3.1� can be evaluated in the presence of either
Eq. �3.14� or �3.15�. The antiferromagnetic perturbation in
Eq. �3.14� is most straightforward to analyze because H0
+Haf is a combination of five anticommuting Dirac matrices.
On a circle surrounding the junction parameterized by s it
can be written in the general form

H�k,s� = h�k,s� · �� , �3.16�

where �� = ��x�x ,�x�y ,�x�z ,�z ,�y� and h�k ,s�= �vk ,m�s�
+�
k
2 ,haf�s��. For a model of this form, the second Chern
number in Eq. �3.1� is given simply by the winding number
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of the unit vector d̂�k ,s�=h / 
h
�S4 as a function of k and s.
This is most straightforward to evaluate in the limit �→0,

where d̂ is confined to the “equator” �d1 ,d2 ,d3 ,0 ,0� every-
where except near k�0 and 
k
�1 /�. The winding number
is determined by the behavior at k�0, and may be expressed
by Eq. �3.4� with � given by

ei� =
m + ihaf

�m2 + haf
2

. �3.17�

We therefore expect a topological line defect to occur at
an intersection between planes where m and haf change sign.
The chiral fermion mode associated with this defect can seen
explicitly if we solve a simple linear model, m= fzz, haf
= fyy. This model, which has the form of a harmonic oscilla-
tor, is solved in Appendix C, and explicitly gives the chiral
Dirac fermion mode with dispersion

E�kx� = v sgn�fzfy�kx. �3.18�

B. Class D: Chiral Majorana fermions

1. Topological invariant

A line defect in a superconductor without time-reversal
symmetry is characterized by an integer topological invariant
that determines the number of associated chiral Majorana
fermion modes. Since the BdG Hamiltonian characterizing a
superconductor has the same structure as the Bloch Hamil-
tonian, we can analyze the problem by “forgetting” about the
particle-hole symmetry and treating the BdG Hamiltonian as
if it was a Bloch Hamiltonian. The second Chern number,
given by Eq. �3.1� can be defined. It can be verified that any
value of the Chern number is even under particle-hole sym-
metry so that particle-hole symmetry does not rule out a
nonzero Chern number. We may follow the same steps as
Eqs. �3.1�–�3.5� to express the integer topological invariant
as

ñ =
1

8�2�
T3�S1

Tr�F̃ ∧ F̃� , �3.19�

where F̃ is the curvature form characterizing the BdG theory.
As in Eq. �3.4�, ñ may be expressed as a winding number of

�̃, which is expressed as an integral over the Brillouin zone
of the Chern-Simons 3 form. The difference between n and ñ
is that ñ characterizes a BdG Hamiltonian. If we considered
the BdG Hamiltonian for a nonsuperconducting insulator,
then due to the doubling in the BdG equation, we would find

ñ = 2n . �3.20�

In this case, the chiral Dirac fermion that occurs for a 2�

�n=1� winding of � corresponds to a 4� �n=2� winding of �̃.
Superconductivity allows for the possibility of a 2� winding

in �̃: a chiral Dirac fermion can be split into a pair of chiral
Majorana fermions.

2. Dislocation in a layered topological superconductor

The simplest example to consider is a dislocation in a
three-dimensional superconductor. The discussion closely
parallels Sec. III A 2 and we find

ñ =
1

2�
B · G̃c, �3.21�

where B is the Burgers vector of the dislocation and G̃c
characterizes the triad of first Chern numbers characterizing
the 3D BdG Hamiltonian. A 3D system consisting of layers
of a 2D topological superconductor will be characterized by

a nonzero G̃c. Since, as a 3D superconductor, the layered
structure is in the topologically trivial class, such a state
could be referred to as a weak topological superconductor.

The simplest model system in this class is a stack of 2D
px+ ipy superconductors. A dislocation would then have ñ
=1 and a single chiral Majorana fermion branch. A possible
physical realization of the weak topological superconductor
state is Sr2RuO4, which may exhibit triplet px+ ipy pairing.
Since the spin-up and spin-down electrons make two copies
of the spinless state, a dislocation will be associated with ñ
=2. Thus, we predict that there will be two chiral Majorana
modes bound to the dislocation, which is the same as a single
chiral Dirac fermion mode.

3. Superconductor heterostructures

We now consider heterostructures with associated chiral
Majorana modes. The simplest to consider is a BdG analog
of the structures considered in Fig. 5. These would involve,
for example, an interface between a 3D time-reversal invari-
ant topological superconductor with a magnetic material with
a magnetic domain wall. The analysis of such a structure is
similar to that in Eq. �3.13� if we replace the Pauli matrices
describing the orbital degree of freedom �� with Pauli matri-
ces describing Nambu space ��. Protected chiral Majorana
fermion modes of this sort on the surface of 3He-B with a
magnetic domain wall have been recently discussed by
Volovik.72

In Ref. 48 a different method for engineering chiral Ma-
jorana fermions was introduced by combining an interface
between superconducting and magnetic regions on the sur-
face of a topological insulator. To describe this requires the
eight-band model introduced in Ref. 53

H = �z�x�� · k + �m + �
k
2��z�z + ��x + h�y . �3.22�

�Here, for simplicity we consider only the antiferromagnetic
term�. The surface of the topological insulator occurs at a

M M

TS
(a)

S M

TI
(b)

FIG. 5. Heterostructure geometries for Chiral Majorana fermi-
ons. �a� shows a magnetic domain wall on the surface of a topo-
logical superconductor while �b� shows an interface between a su-
perconductor and a magnet on the surface of a topological insulator.

JEFFREY C. Y. TEO AND C. L. KANE PHYSICAL REVIEW B 82, 115120 �2010�

115120-8



domain wall �say, in the x-y plane�, where m�z� changes sign.
The superconducting order parameter � and magnetic pertur-
bation h both lead to an energy gap in the surface states. This
Hamiltonian is straightforward to analyze because
�H ,�x�y�=0, which allows the 8�8 problem to be divided
into two 4�4 problems, which have superconducting/
magnetic mass terms �h. Near a defect where �=h the
�+h gap never closes while the �−h gap can be critical.
��h leads to a superconducting state while ��h leads to a
quantum-Hall-type state. There is a transition between the
two at �=h.

An explicit model for the line defect can be formulated
with m�z�= fzz, �−h= fyy and �+h=M. The topological in-
variant in Eq. �3.19� can be evaluated using a method similar
to Eq. �3.16� and the chiral Majorana states can be explicitly
solved along the lines of Eq. �3.18�.

C. Class AII: Helical Dirac fermions

1. Topological invariant

Line defects for class AII are characterized by a Z2 topo-
logical invariant. To develop a formula for this invariant we
follow the approach used in Ref. 73 to describe the invariant
characterizing the quantum spin-Hall insulator.

As in the previous section, a line defect in three dimen-
sions is associated with a four parameter space �k ,r��T3

�S1. Due to time-reversal symmetry, the second Chern num-
ber that characterized the line defects in Eq. �3.1� must be
zero. Thus there is no obstruction to defining Bloch basis
functions 
u�k ,r�� continuously over the entire base space.
However, the time reversal relation between �−k ,r� and
�k ,r� allows for an additional constraint so that the state is
specified by the degrees of freedom in half the Brillouin
zone.

As in Ref. 73 it is useful to define a matrix

wmn�k,r� = 	um�k,r�
�
un�− k,r�� . �3.23�

Because 
um�k ,r�� and 
un�−k ,r�� are related by time-
reversal symmetry w�k ,r� is a unitary matrix that depends
on the gauge choice for the basis functions. Locally it is
possible to choose a basis in which

w�k,r� = w0, �3.24�

where w0 is independent of k and r so that states at �k ,r�
have a fixed relation. Since for k=0 w=−wT, w0 must be
antisymmetric. A natural choice is thus w0= i�2 � 1.

The Z2 topological invariant is an obstruction to finding
such a constrained basis globally. The constrained basis can
be defined on two patches but the basis functions on the two
patches are necessarily related by a topologically nontrivial
transition function. In this sense, the Z2 invariant resembles
the second Chern number in Eq. �3.1�.

In Appendix E we will generalize the argument developed
in Ref. 73 to show that the transition function relating the
two patches defines the Z2 topological invariant, which may
be written74

� =
1

8�2��
�1/2�T3�S1

Tr�F ∧ F� − �
��1/2�T3�S1

Q3�mod 2,

�3.25�

where F and Q3 are expressed in terms of the Berry’s con-
nection A using Eqs. �3.2� and �3.3�. The integral is over half
of the base space �1 /2��T3�S1�, defined such that �k ,r� and
�−k ,r� are never both included. The second term is over the
boundary of �1 /2��T3�S1�, which is closed under �k ,r�
→ �−k ,r�. Equation �3.25� must be used with care because
the Chern Simons form in the second term depends on the
gauge. A different continuous gauge can give a different �,
but due to Eq. �3.24�, they must be related by an even inte-
ger. Thus, an odd number is distinct.

In addition to satisfying Eq. �3.24�, it is essential to use a
gauge in which at least Q3 is continuous on � 1

2T3�S1

�though not necessarily on all of 1
2T3�S1�. This continuous

gauge can always be found if the base space is a sphere S4.
However for T3�S1, the weak topological invariants can
pose an obstruction to finding a continuous gauge. We will
show how to work around this difficulty at the end of the
following section.

2. Dislocation in a weak topological insulator

Ran, Zhang, and Vishwanath recently studied the problem
of a line dislocation in a topological insulator.75 They found
that an insulator with nontrivial weak topological invariants
can exhibit topologically protected helical modes at an ap-
propriate line dislocation. In this section we will show that
these protected modes are associated with a nontrivial Z2
invariant in Eq. �3.25�. In addition to providing an explicit
example for this invariant, this formulation provides addi-
tional insight into why protected modes can exist in a weak
topological insulator. As argued in Ref. 9 and 12, the weak
topological invariants lose their meaning in the presence of
disorder. The present considerations show that the helical
modes associated with the dislocation are protected by the
strong topological invariant associated with the line defect.
Thus if we start with a perfect crystal and add disorder, then
the helical modes remain, even though the crystal is no
longer a weak topological insulator. The helical modes re-
main even if the disorder destroys the crystalline order, so
that dislocations become ill defined, provided the mobility
gap remains finite in the bulk crystal. In this case, the Hamil-
tonian has a nontrivial winding around the line defect, even
though the defect has no obvious structural origin. Thus, the
weak topological insulator provides a route to realizing the
topologically protected line defect. But once present, the line
defect is more robust than the weak topological insulator.

To evaluate the Z2 invariant in Eq. �3.25� for a line dislo-
cation we repeat the analysis in Sec. III A 2. Because of the
subtlety with the application of Eq. �3.25� we will first con-
sider the simplest case of a dislocation in a weak topological
insulator. Afterward we will discuss the case of a crystal with
both weak and strong invariants.

The Bloch functions on a circle surrounding a dislocation
are described by Eq. �3.6� and the evaluation of Tr�F∧F�
proceeds exactly as in Eqs. �3.7�–�3.9�. To evaluate the sec-

TOPOLOGICAL DEFECTS AND GAPLESS MODES IN… PHYSICAL REVIEW B 82, 115120 �2010�

115120-9



ond term in Eq. �3.25� we need the Chern-Simons 3 form.
One approach is to use Eqs. �3.3� and �3.7�. However, this is
not continuously defined on ��1 /2��T3�S1� because A has a
term B ·kds that is discontinuous at the Brillouin zone
boundary. An alternative is to write

Q3 = Tr�B · �2A0 ∧ dk − �F0,ap�� ∧ ds� . �3.26�

From Eq. �3.9� this clearly satisfies Tr�F∧F�=dQ3 and it is
defined continuously on ��1 /2��T3�S1� as long as A0 is
continuously defined on ��1 /2�T3. For a weak topological
insulator this is always possible, provided �1 /2�T3 is defined
appropriately. Equation �3.26� differs from Eq. �3.3� by a
total derivative.

Combining Eqs. �3.9�, �3.25�, and �3.26�, the terms in-
volving ap cancel because ap is globally defined. �Note that
ap is unchanged by a k-dependent—but
r-independent—gauge transformation�. This cannot be said
of the term involving A0, however, because in a weak topo-
logical insulator A0 is not globally defined on �1 /2�T3. Per-
forming the trivial integral over s we then find

� =
1

2�
B · G� mod 2, �3.27�

where

G� = �
1/2T3

Tr�F0� ∧ dk − �
�1/2T3

Tr�A0� ∧ dk .

�3.28�

The simplest case to consider is a weak topological insu-
lator consisting of decoupled layers of 2D quantum spin-Hall
insulator stacked with a lattice constant a in the z direction.
In this case F0=F0�kx ,ky� is independent of kz so the kz
integral can be performed trivially. This leads to G�

= �2� /a��ẑ, where

� =
i

2���1/2T2
Tr�F0� − �

�1/2T2
Tr�A0� �3.29�

is the 2D Z2 topological invariant characterizing the indi-
vidual layers.

Equation �3.28� also applies to a more general 3D weak
topological insulator. A weak topological insulator is charac-
terized by a triad of Z2 invariants ��1�2�3� that define a mod
2 reciprocal lattice vector9,12

G� = �1b1 + �2b2 + �3b3, �3.30�

where bi are primitive reciprocal lattice vectors correspond-
ing to primitive lattice vectors ai �such that ai ·b j =2��ij�.
The indices �i can be determined by evaluating the 2D in-
variant in Eq. �3.29� on the time-reversal invariant plane
k ·ai=�.

To show that G� in Eqs. �3.28� and �3.30� are equivalent,
consider G� ·a1 in Eq. �3.28�. If we write k=x1b1+x2b2
+x3b3, then the integrals over x2 and x3 have the form of Eq.
�3.29�. Since this is quantized, it must be independent of x1
and will be given by its value at x1=1 /2. This then gives
G� ·a1=2��1. A similar analysis of the other components
establishes the equivalence. A nontrivial value of Eq. �3.27�

is the same as the criterion for the existence of protected
helical modes on a dislocation Ran, Zhang, and
Vishwanath75 derived using a different method.

Evaluating Eq. �3.28� in a crystal that is both a strong
topological insulator and a weak topological insulator �such
as Bi1−xSbx� is problematic because the 2D invariants evalu-
ated on the planes x1=0 and x1=1 /2 are necessarily different
in a strong topological insulator. This arises because a non-
trivial strong topological invariant �0 is an obstruction to
continuously defining A0 on ��1 /2�T3 so Eq. �3.29� cannot
be evaluated continuously between x1=0 and x1=1 /2. From
the point of view of the topological classification of the de-
fect on T3�S1, �0 is like a weak topological invariant be-
cause it a property of T3 and is independent of the real-space
parameter s in S1. Thus this complication is a manifestation
of the fact that topological classification of Hamiltonians on
T3�S1 has more structure than those on S4. The problem is
not with the existence of the invariant � on T3�S1 but rather
with applying the formulas �3.25� and �3.28�. The problem
can be circumvented with the following trick.

Consider an auxiliary Hamiltonian H̃�k ,r�=H�k ,r�
� HSTI�k�, where HSTI is a simple model Hamiltonian for a
strong topological insulator such as Eq. �3.13�, which can be
chosen such that it is a constant independent of k everywhere
except in a small neighborhood close to k=0 where a band
inversion occurs. Adding such a Hamiltonian that is indepen-
dent of r will have no effect on the topologically protected
modes associated with a line defect so we expect the invari-

ant � to be the same for both H�k ,r� and H̃�k ,r�. If H�k ,r�
has a nontrivial strong topological invariant �0=1 then

H̃�k ,r� will have �0=0, so that Eq. �3.28� can be applied. G�

will then be given by the 2D invariant in Eq. �3.29� evaluated

for H̃, which will be independent of x1. Since HSTI�k� is
k-independent everywhere except a neighborhood of k=0,
this will agree with the 2D invariant evaluated for H at x1
=1 /2, but not x1=0. It then follows that even in a strong
topological insulator the invariant characterizing a line dis-
location is given by Eq. �3.27�, where G� is given by Eq.
�3.30� in terms of the weak topological invariants.

3. Heterostructure geometries

In principle, it may be possible to realize 1D helical fer-
mions in a 3D system that does not rely on a weak topologi-
cal insulating state. It is possible to write down a 3D model,
analogous to Eq. �3.13� that has bound helical modes. How-
ever, it is not clear how to physically implement this model.
This model will appear in a more physical context as a BdG
theory in the following section.

D. Class DIII: Helical Majorana fermions

Line defects for class DIII are characterized by a Z2 topo-
logical invariant that signals the presence or absence of 1D
helical Majorana fermion modes. As in Sec. III B, the BdG
Hamiltonian has the same structure as a Bloch Hamiltonian,
and the Z2 invariant can be deduced by “forgetting” the
particle-hole symmetry, and treating the problem as if it was
a Bloch Hamiltonian in class AII.
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There are several ways to realize helical Majorana fermi-
ons. The simplest is to consider the edge of a 2D time-
reversal invariant superconductor or superfluid, or equiva-
lently a dislocation in a layered version of that 2D state. A
second is to consider a topological line defect in a 3D class
DIII topological superconductor or superfluid. Such line de-
fects are well known in of 3He B �Refs. 41 and 76� and have
recently been revisited in Refs. 37 and 77.

Here we will consider a different realization that uses to-
pological insulators and superconductors. Consider a linear
junction between two superconductors on the surface of a
topological insulator as shown in Fig. 6. In Ref. 48 it was
shown that when the phase difference between the supercon-
ductors is � there are gapless helical Majorana modes that
propagate along the junction. This can be described by an
eight-band minimal model that describes a topological insu-
lator surface with a superconducting proximity effect

H = v�z�x�� · k + �m + �
k
2��z�z + �1�x. �3.31�

Here m is the mass describing the band inversion of a topo-
logical insulator, as in Eq. �3.22�, and �1 is the real part of
the superconducting gap parameter. This model has time re-
versal symmetry with �= i�yK and particle-hole symmetry
with 
=�y�yK. The imaginary part of the superconducting
gap, �2�y violates time-reversal symmetry. A line junction
along the x direction with phase difference � at the surface
of a topological insulator corresponds to the intersection of
planes where m�z� and �1�y� change sign.

The Z2 invariant characterizing such a line defect is
straightforward to evaluate because �H ,�y�x�=0. This extra
symmetry allows a “spin Chern number” to be defined, n�

= �16�2�−1�Tr��y�xF∧F�. Since the system decouples into
two time reversed versions of Eq. �3.13�, n�=1. By repeating
the formulation in Appendix E of the Z2 invariant �, it is
straightforward to show that this means �=1.

The helical modes can be explicitly seen by solving the
linear theory, m= fzz, �1= fyy, which leads to the harmonic
oscillator model studied in Appendix C. In the space of the
two zero modes the Hamiltonian has the form

H = vkx�x �3.32�

and describes 1D helical Majorana fermions.

E. Class C: Chiral Dirac fermions

We finally briefly consider line defects in class C. Class C
can be realized when time-reversal symmetry is broken in a

superconductor without spin orbit interactions that has even
parity singlet pairing. Line defects are characterized by an
integer topological invariant that determines the number of
chiral Majorana fermion modes associated with the line. As
in class D, this may be evaluated by forgetting the particle-
hole symmetry and evaluating the corresponding Chern num-
ber that would characterize class A. The 2Z in Table II for
this case, however, means that the Chern integer computed in
this manner is necessarily even. This means that there will
necessarily be an even number 2n of chiral Majorana fer-
mion modes, which may equivalently viewed as n chiral
Dirac fermion modes. An example of such a system would
be a 2D dx2−y2 + idxy superconductor,78 which exhibits chiral
Dirac fermion edge states, or equivalently a dislocation in a
3D layered version of that state.

IV. POINT DEFECTS

Point defects can occur at the end of a 1D system ��=1
−0� or at topological defects in 2D ��=2−1� or 3D ��=3
−2� systems. From the �=1 column Table I, it can be seen
that there are five symmetry classes that can have topologi-
cally nontrivial point defects. These are expected to be asso-
ciated with protected zero-energy bound states. Table III lists
the nontrivial classes, along with the character of the associ-
ated zero modes. In this section we will discuss each of these
cases.

A. Classes AIII, BDI, and CII: Chiral zero modes

1. Topological invariant and zero modes

Point defects in classes AIII, BDI, and CII are character-
ized by integer topological invariants. The formula for this
integer invariant can be formulated by exploiting the chiral
symmetry in each class. In a basis where the chiral symmetry
operator is �=�z, the Hamiltonian may be written

H�k,r� = � 0 q�k,r�
q�k,r�† 0

� . �4.1�

When the Hamiltonian has a flattened eigenvalue spectrum
H2=1, q�k ,r� is a unitary matrix. For a point defect in d
dimensions, the Hamiltonian as a function of d momentum
variables and D=d−1 position variables is characterized by

S S

TI

ϕ=π ϕ=0

FIG. 6. Helical Majorana fermions at a linear Josephson junc-
tion with phase difference � on the surface of a topological
insulator.

TABLE III. Symmetry classes supporting nontrivial point topo-
logical defects and their associated E=0 modes.

Symmetry Topological classes E=0 bound states

AIII Z Chiral Dirac

BDI Z Chiral Majorana

D Z2 Majorana

DIII Z2

Majorana Kramers doublet
�=Dirac�

CII 2Z Chiral Majorana Kramers

Doublet �=Chiral Dirac�
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the winding number associated with the homotopy
�2d−1�U�n→���=Z, which is given by

n =
�d − 1�!

�2d − 1�!�2�i�d�
Td�Sd−1

Tr��qdq†�2d−1� . �4.2�

For a Hamiltonian that is built from anticommuting Dirac

matrices, H�k ,r�= d̂�k ,r� ·�� , this invariant is given simply

by the winding degree of the mapping d̂�k ,r� from Td

�Sd−1 to S2d−1, which is expressed as an integral of the Jaco-
bian

n =
�d − 1�!

2�d �
Td�Sd−1

ddkdd−1r
�d̂�k,r�
�dk�d−1r

. �4.3�

In class AIII there are no constraints on q�k ,r� other than
unitarity so all possible values of n are possible. There are
additional constraints for the chiral classes with antiunitary
symmetries. As shown in Appendix B, this is simplest to see
by analyzing the constraints on the winding degree discussed
above. n must be zero in classes CI and DIII. There is no
constraint on n in class BDI while n must be even in class
CII.

The topological invariant is related to an index that char-
acterizes the chirality of the zero modes

n = N+ − N−, �4.4�

where N are the number of zero modes that are eigenstates
of � with eigenvalue 1. To see that these zero modes are
indeed protected consider N+=n�0 and N−=0. Any term in
the Hamiltonian that could shift any of the N+ degenerate
states would have to have a nonzero matrix element connect-
ing states with the same chirality. Such terms are forbidden,
though, by the chiral symmetry �H ,��=0. In the supercon-
ducting classes BDI and CII the zero energy states are Ma-
jorana bound states. In class CII, however, since time rever-
sal symmetry requires that n must be even, the paired
Majorana states can be regarded as zero-energy Dirac fer-
mion states.

In the special case where H�k ,r� has the form of a mas-
sive Dirac Hamiltonian, by introducing a suitable regulariza-
tion for 
k
→� the topological invariant in Eqs. �4.2� and
�4.3� can be expressed in a simpler manner as a topological
invariant characterizing the mass term. In the following sec-
tions we consider this in the three specific cases d=1,2 ,3.

2. Solitons in d=1

The simplest topological zero mode occurs in the Jackiw-
Rebbi model,45 which is closely related to the Su, Schrieffer,
and Heeger model.47 Consider

H�k,x� = vk�x + m�y . �4.5�

Domain walls where m�x� changes sign as a function of x are
associated with the well known zero-energy soliton states.

To analyze the topological class requires a regularization
for 
k
→�. This can either be done with a lattice, as in the
Su, Schrieffer, Heeger model or by adding a term �k2�y, as in
Eq. �3.13� so that 
k
→� can be replaced by a single point.

In either case, the invariant in Eq. �4.2� changes by 1 when m
changes sign.

3. Jackiw-Rossi Model in d=2

Jackiw and Rossi introduced a two-dimensional model
that has protected zero modes.46 The Hamiltonian can be
written

H�k,r� = v�� · k + �� · �� �r� , �4.6�

where k= �kx ,ky�, and ��1 ,�2� and ��1 ,�2� are anticommut-
ing Dirac matrices. They showed that the core of a vortex
where �=�1+ i�2 winds by 2�n is associated with n zero
modes that are protected by the chiral symmetry. Viewed as a
BdG Hamiltonian, these zero modes are Majorana bound
states.

This can be interpreted as a Hamiltonian describing su-
perconductivity in Dirac fermions. In this interpretation the
Dirac matrices are expressed as ��1 ,�2�=�z��x ,�y� and
��1 ,�2�= ��x ,�y�, where �� is a Pauli matrix describing spin
and �� describes particle-hole space. The superconducting
pairing term is �=�1+ i�2. In this interpretation a vortex
violates the physical time-reversal symmetry �= i�yK. How-
ever, even in the presence of a vortex this model has a ficti-

tious “time-reversal symmetry” �̃=�x�xK which satisfies

�̃2=+1. This symmetry would be violated by a finite chemi-
cal potential term ��z. Combined with particle-hole symme-

try 
=�y�yK �
2=+1�, �̃ defines the BDI class with chiral
symmetry �=�z�z.

Evaluating the topological invariant in Eq. �4.2� again re-
quires a 
k
→� regularization. One possibility is to add
�
k
2�x so that 
k
→� can be replaced by a single point. In
this case the invariant can be determined by computing the

winding degree of d̂�k ,r� on S3. In the limit �→0 the k
integral can be performed so that Eq. �4.2� can be expressed
as the winding number of the phase of �1+ i�2= 
�
ei�

n =
1

2�
�

S1
d� . �4.7�

4. Hedgehogs in d=3

In Ref. 53 we introduced a three dimensional model for
Majorana bound states that can be interpreted as a theory of
a vortex at the interface between a superconductor and a
topological insulator. In the special case that the chemical
potential is equal to zero, model has the same form as Eq.
�4.6�, except that now all of the vectors are three dimen-
sional. In the topological insulator model we have ��
= ��1 ,�2 ,�3�=�x�z�� and �� = ��1 ,�2 ,�3�= ��z�z ,�x ,�y�. �� and
�� are defined as before while �� describes a orbital degree of
freedom. The chiral symmetry, �=�y�z is violated if a
chemical potential term ��z is included.

Following the same steps that led to Eq. �4.7� the invari-
ant Eq. �4.2� is given by the winding number of �̂=�� / 
�� 
 on
S2

n =
1

4�
�

S2
�̂ · �d�̂ � d�̂� . �4.8�
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B. Class D: Majorana bound states

1. Topological invariant

Point defects in class D are characterized by a Z2 topo-
logical invariant that determines the presence or absence of a
Majorana bound state associated with the defect. These in-
clude the well-known end states in a 1D p-wave supercon-
ductor and vortex states in a 2D px+ ipy superconductor. In
Ref. 53 we considered such zero modes in a three-
dimensional BdG theory describing Majorana zero modes in
topological insulator structures. Here we develop a unified
description of all of these cases.

For a point defect in d dimensions, the Hamiltonian de-
pends on d momentum variables and D=d−1 position vari-
ables. In Appendix D we show that the Z2 invariant is given
by

� =
2

d!
� i

2�
�d�

Td�Sd−1
Q2d−1 mod 2, �4.9�

where Q2d−1 is the Chern Simons form. The specific cases of
interest are

Q1 = Tr�A� , �4.10�

Q3 = Tr�AdA +
2

3
A3 , �4.11�

Q5 = Tr�A�dA�2 +
3

2
A3dA +

3

5
A5 . �4.12�

It is instructive to see that Eq. �4.9� reduces to Eq. �4.2� in
the case in which a system also has particle-hole symmetry.
In this case, as detailed in Appendix D it is possible to
choose a gauge in which A=q†dq /2, so that Q2d−1
� �qdq†�2d−1.

2. End states in a 1D superconductor

The simplest example of a point defect in a supercon-
ductor occurs in Kitaev’s model38 of a one-dimensional
p-wave superconductor. This is described by a simple 1D
tight binding model for spinless electrons, which includes a
nearest-neighbor hopping term tci

†ci+1+H.c. and a nearest-
neighbor p-wave pairing term �cici+1+H.c.. The Bogoliubov
de Gennes Hamiltonian can then be written as

H�k� = �t cos k − ���z + � sin k�x. �4.13�

This model exhibits a weak pairing phase for 
�
� t and a
strong pairing phase for 
�
� t. The weak pairing phase will
have zero-energy Majorana states at its ends.

The topological invariant in Eq. �4.9� can be easily evalu-
ated. We find A=d� /2, where � is the polar angle of d�k�
= �t cos k−� ,� sin k�. It follows that for 
�
� t, the topo-
logical invariant is �=1 mod 2.

3. Vortex in a 2D topological superconductor

In two dimensions, a Majorana bound state occurs at a
vortex in a topological superconductor. This can be easily

seen by considering the edge states of the topological super-
conductor in the presence of a hole.39 Particle-hole symmetry
requires that the quantized edge states come in pairs. When
the flux is an odd multiple of h /2e, the edge states are quan-
tized such that a zero mode is present. In this section we will
evaluate the topological invariant in Eq. �4.9� associated with
a loop surrounding the vortex.

We begin with the class D BdG Hamiltonian Hp
0�kx ,ky�

characterizing the topological superconductor when the su-
perconducting phase is zero. We include the subscript p to
denote the first Chern number that classifies the topological
superconductor. We can then introduce a nonzero supercon-
ducting phase by a gauge transformation

Hp�k,�� = e−i��z/2Hp
0�k�ei��z/2, �4.14�

where �z operates in the Nambu particle-hole space. We now
wish to evaluate Eq. �4.9� for this Hamiltonian when phase
��s� winds around a vortex. There is, however, a difficulty
because the Chern Simons formula requires a gauge that is
continuous throughout the entire base space T2�S1. The
nonzero Chern number p characterizing Hp

0�k� is an obstruc-
tion to constructing such a gauge. A similar problem arose in
Sec. III C 2, when we discussed a line dislocation in a weak
topological superconductor. We can adapt the trick we used
there to get around the present problem. We thus double the
Hilbert space to include two copies of our Hamiltonian, one
with Chern number p and one with Chern number −p

H̃0�k� = �Hp
0�k� 0

0 H−p
0 �k�

� . �4.15�

We then put the vortex in only the +p component

H̃�k,�� = e−i�qH̃0�k�ei�q, �4.16�

where

q =
1 + �z

2
�1 0

0 0
� . �4.17�

We added an extra phase factor by replacing �z by 1+�z in
order to make ei�q periodic under �→�+2�.

Since the Chern number characterizing H̃0�k� is zero,
there exists a continuous gauge


ũi�k,��� = ei�q
ũi
0�k�� , �4.18�

which allows us to evaluate the Chern-Simons integral. The

Berry’s connection Ãij = 	ũi 
dũj� is given by

Ã = Ã0 + iQd� , �4.19�

where Ã0�k� is the connection describing H̃0�k� and Qij�k�
= 	ũi

0�k�
q
ũj
0�k��. Inserting this into Eq. �4.11� and rearrang-

ing terms we find

Q3 = Tr�2QF̃0 − d�QÃ0�� ∧ d� , �4.20�

where F̃0=dÃ0+Ã0∧Ã0. Since the second term is a total
derivative it can be discarded. For the first term there are two
contributions from the 1 and the �z in Eq. �4.17�. Upon inte-
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grating over k, the �z term can be shown to vanish as a
consequence of particle-hole symmetry. The 1 term simply
projects out the Berry curvature of the original Hamiltonian
Hp

0�k� so that

Q3 = Tr�F0� ∧ d� . �4.21�

It follows from Eq. �4.9� that the Z2 invariant characterizing
the vortex is

� = pm mod 2, �4.22�

where p is the Chern number characterizing the topological
superconductor and m is the phase winding number associ-
ated with the vortex.

It is also instructive to consider this invariant in the con-
text of the simple two-band model introduced by Read and
Green.39 This can be written as a simple tight-binding model

H0�kx,ky� = �t�cos kx + cos ky� − ���z + ��sin kx�x + sin ky�y� ,

�4.23�

where the superconducting order parameter � is real. As in
Eq. �4.13�, this model exhibits weak and strong pairing
phases for 
�
� t and 
�
� t. These are distinguished by the
Chern invariant, which in turn is related to the winding num-

ber on S2 of the unit vector d̂�k�, where d��k� are the coeffi-
cients of �� in Eq. �4.23�. A nonzero superconducting phase is
again introduced by rotating about �z as in Eq. �4.14�. Here
we wish to show that in this two band model the Z2 invariant
� can be understood from a geometrical point of view.

The Z2 invariant characterizing a vortex can be under-

stood in terms of the topology of the maps d̂�kx ,ky ,��. from
T2�S1 to S2. These maps were first classified by Pontrjagin79

and have also appeared in other physical contexts.53,80,81

Without losing generality, we can reduce the torus T2 to a
sphere S2 so the mappings are S2�S1→S2. When for fixed �

d̂�kx ,ky ,�� has an S2 winding number of p, the topological
classification is Z2p. In the case of interest, p=1, so there are
two classes.

This Z2 Pontrjagin invariant can be understood pictorially
by considering inverse image paths in �k ,�� space, which
map to two specific points on S2. These correspond to 1D
curves in S2�S1. Figure 7 shows three examples of such
curves. The inner sphere corresponds to �=0 while the outer
sphere corresponds to �=2�. Since p=1, for every point on
S2 the inverse image path is a single curve connecting the
inner and outer spheres. The key point is to examine the
linking properties of these curves. The Z2 invariant describes
the number of twists in a pair of inverse image paths, which
is 1 in �a�, 2 in �b�, and 0 in �c�. The configuration in �b� can
be continuously deformed into that in �c� by dragging the
paths around the inner sphere. This can be verified by a
simple demonstration using your belt. The twist in �a�, how-
ever, cannot be undone. The number of twists thus defines
the Z2 Pontrjagin invariant.

4. Superconductor heterostructures

Finally, in three dimensions, a nontrivial point defect can
occur at a superconductor heterostructure. An example is a

vortex in the superconducting state at the interface between a
superconductor and a topological insulator. As shown in Ref.
53, this can be described by the simple Hamiltonian

H = v�z�x�� · k − ��z + �m + �
k
2��z�z + �1�x + �2�y .

�4.24�

Here m is a mass which distinguishes a topological insulator
from a trivial insulator, and �=�1+ i�2 is a superconducting
order parameter. For �=0, this Hamiltonian has the form of
the three dimensional version of Eq. �4.6� discussed in Sec.
IV A 4, where the mass term is characterized by the vector
�� = �m ,�1 ,�2�. A vortex in � at the interface where m
changes sign then corresponds to a hedgehog singularity in
�� . From Eq. �4.3�, it can be seen that the class BDI Z invari-
ant is n=1. This then establishes that the class D Z invariant
is �=1. The Z2 survives when a nonzero chemical potential
reduces the symmetry from class BDI to class D.

C. Class DIII: Majorana doublets

Point defects in class DIII are characterized by a Z2 topo-
logical invariant. These are associated with zero modes, but
unlike class D, the zero modes are required by Kramers theo-
rem to be doubly degenerate. The zero modes thus form a
Majorana doublet, which is equivalent to a single Dirac fer-
mion.

In Table I, Class DIII, �=1 is an entry that is similar to
Class AII, �=2. The Z2 for DIII invariant bears a resem-
blance to the invariant for AII, which is a generalization of
the Z2 invariant characterizing the 2D quantum spin-Hall in-
sulator. In Appendix B we will establish a formula that em-
ploys the same gauge constraint

w�k,r� = w0, �4.25�

where w0 is a constant independent of k and r. w�k ,r� re-
lates the time-reversed states at k and −k and is given by Eq.
�3.23�. Provided we choose a gauge that satisfies this con-
straint, the Z2 invariant is given by

φ=0

φ=2π

ν=1 ν=0 ν=0(a) (b) (c)

φ=0

φ=2π

φ=0

φ=2π

FIG. 7. �Color online� Visualization of the Z2 Pontrjagin invari-
ant characterizing maps from �k ,���S2�S1 to S2 when the wind-
ing degree for each � is 1. The inner sphere corresponds to k at
�=0 while the outer sphere is �=2�. The lines depict inverse
images of two specific points on S2, which are lines connecting the
inner and outer spheres. In �a� they have one twist, which cannot be
eliminated. The double twist in �b� can be unwound by smoothly
dragging the paths around the sphere to arrive at �c�, which has no
twist.
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�̃ =
1

d!
� i

2�
�d�

Td�Sd−1
Q2d−1 mod 2. �4.26�

This formula is almost identical to the formula for a point
defect in class D but they differ by an important factor of
two. Due to the combination of time-reversal and particle-
hole symmetries the Chern-Simons integral in Eq. �4.26� is
guaranteed to be an integer but the integer is not gauge in-
variant. When the time-reversal constraint is satisfied, the
parity �̃ is gauge invariant. It then follows that the class D
invariant in Eq. �4.9�, �=0 mod 2.

In the special case d=1 there is a formula that does not
rely on the gauge constraint, though it still requires a glo-
bally defined gauge. It is related to the similar “fixed-point”
formula for the invariant for the 2D quantum spin-Hall
insulator,73 and has recently been employed by Qi, Hughes,
and Zhang82 to classify one-dimensional time-reversal in-
variant superconductors. In class DIII, it is possible to
choose a basis in which the time-reversal and particle-hole
operators are given by �=�yK and 
=�xK so that the chiral
operator is �=�z. In this basis, the Hamiltonian has the form
�4.1�, where q�k ,r�→q�k� satisfies q�−k�=−q�k�T. Thus,
Pf�q�k�� is defined for the time-reversal invariant points k
=0 and k=�. q�k� is related to w�k� because in a particular
gauge it is possible to choose w�k�=q�k� /�
Det�q�k��
. The
Z2 invariant is then given by

�− 1��̃ =
Pf�q����
Pf�q�0��

�Det�q�0��
�Det�q����

, �4.27�

where the branch �Det�q�k�� is chosen continuously between
k=0 and k=�. The equivalence of Eqs. �4.26� and �4.27� for
d=1 is demonstrated in Appendix A. Unlike Eq. �4.26�, how-
ever, the fixed-point formula �4.27� does not have a natural
generalization for d�1.

Majorana doublets can occur at topological defects in
time-reversal invariant topological superconductors, or in
Helium 3B. Here we consider a different configuration at a
Josephson junction at the edge of a quantum spin-Hall insu-
lator �Fig. 8�. When the phase difference across the Joseph-
son junction is �, it was shown in Refs. 38 and 83 that there
is a level crossing in the Andreev bound states at the junc-
tion. This corresponds precisely to a Majorana doublet.

This can be described by the simple continuum 1D theory
introduced in Ref. 83

H = vk�z�z + �1�x. �4.28�

Here �z describes the spin of the quantum spin-Hall edge
state and �1 is the real superconducting order parameter.
This model has particle-hole symmetry 
=�y�yK and time-
reversal symmetry �= i�yK and is in class DIII. A � junction
corresponds to a domain wall where �1 changes sign. Fol-
lowing appendix C, it is straightforward to see that this will
involve a degenerate pair of zero modes indexed by the spin
�z and chirality �y constrained by �y�z=−1.

The Hamiltonian �4.28� should be viewed as a low-energy
theory describing the edge of a 2D quantum spin-Hall insu-
lator. Nonetheless, we may describe a domain wall where �1
changes sign using an effective one dimensional theory by
introducing a regularization replacing �1 by �1+�k2. This
regularization will not affect the topological structure of a
domain wall, where �1 changes sign. A topologically equiva-
lent lattice version of the theory then has the form

H = t sin k�z�z + ��1 + u�1 − cos k���x. �4.29�

where we assume 
�1
�2u.
The topological invariant can be evaluated using either

Eq. �4.26� or �4.27�. To use Eq. �4.26�, note that Eq. �4.29�
has exactly the same form as two copies �distinguished by
�z= 1� of Eq. �4.13�. The evaluation of Eq. �4.26� then
proceeds along the same lines. It is straightforward to check
that in a basis where the time-reversal constraint in Eq.
�4.25� is satisfied �this fixes the relative phases of the �z
= 1 states�, A=d�, where � is the polar angle of d�k�
= �t sin k ,�1+u�1−cos k��. It follows that a defect where �1
changes sign has �̃=1.

To use Eq. �4.27�, we transform to a basis in which �
=�yK, 
=�xK, and �=�z. This is accomplished by the uni-
tary transformation U=exp�i�� /4��y�z�exp�i�� /4��x�. Then,
H has the form of Eq. �3.13� with q�k�=−i�t sin k�z+ ��1
+u�1−cos k���y�. It follows that det�q�k�� is real and positive
for all k. Moreover, Pf�q�0�� /�det�q�0��=sgn��1� while
Pf�q���� /�det�q����=1. Again, a defect where �1 changes
sign has �̃=1.

V. ADIABATIC PUMPS

In this section we will consider time-dependent Hamilto-
nians H�k ,r , t�, where in additional to having adiabatic spa-
tial variation r there is a cyclic adiabatic temporal variation
parameterized by t. We will focus on pointlike spatial de-
fects, in which the dimensions of k and r are related by
d−D=1.

Adiabatic cycles in which H�k ,r , t=T�=H�k ,r , t=0� can
be classified topologically by considering t to be an addi-

tional “spacelike” variable, defining D̃=D+1. Such cycles
will be classified by the �=0 column of Table I. Topologi-
cally nontrivial cycles correspond to adiabatic pumps. Table
IV shows the symmetry classes which host nontrivial pump-
ing cycles, along with the character of the adiabatic pump.
There are two general cases. Classes A, AI, and AII define a
charge pump, where after one cycle an integer number of
charges is transported toward or away from the point defect.

S Sϕ = 0 ϕ = π

QSHI

FIG. 8. A Josephson junction in proximity with the helical edge
states of a quantum spin-Hall insulator. When the phase difference
is �, there is a zero energy Majorana doublet at the junction.
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Classes BDI and D define a fermion parity pump. We will
discuss these two cases separately.

We note in passing that the �=0 column of Table I also
applies to topological textures, for which d=D. For example,
a spatially dependent three-dimensional band structure
H�k ,r� can have topological textures analogous to Skyrmi-
ons in a 2D magnet. Such textures have recently been ana-
lyzed by Ran, Hosur, and Vishwanath84 for the case of class
D, where they showed that the Z2 invariant characterizing the
texture corresponds to the fermion parity associated with the
texture. Thus, nontrivial textures are fermions.

A. Classes A, AI, and AII: Thouless charge pumps

The integer topological invariant characterizing a pump-
ing cycle in class A is simply the Chern number characteriz-
ing the Hamiltonian H�k ,r , t�.60,61 Imposing time-reversal
symmetry has only a minor effect on this. For �2=−1 �Class
AII�, an odd Chern number violates time-reversal symmetry
so that only even Chern numbers are allowed. This means
that the pumping cycle can only pump Kramers pairs of elec-
trons. For �2=+1 �Class AI� all Chern numbers are consis-
tent with time-reversal symmetry.

The simplest charge pump is the 1D model introduced by
Thouless.60 A continuum version of this model can be written
in the form

H�k,t� = vk�z + �m1�t� + �k2��x + m2�t��y . �5.1�

When the masses undergo a cycle such that the phase of
m1+ im2 a single electron is transmitted down the wire. In
this case, H�k , t� has a nonzero first Chern number. The
change in the charge associated with a point in a 1D system
is given by the difference in the Chern numbers associated
with either side of the point. Thus, after a cycle a charge e
accumulates at the end of a Thouless pump.

A two-dimensional version of the charge pump can be
developed based on Laughlin’s argument85 for the integer
quantum-Hall effect. Consider a 2D �=1 integer quantum-
Hall state and change the magnetic flux threading a hole
from 0 to h /e. In the process, a charge e is pumped to the
edge states surrounding the hole. This pumping process can
be characterized by the second Chern number characterizing
the 2D Hamiltonian H�kx ,ky ,� , t�, where � parameterizes a
circle surrounding the hole. A similar pump in 3D can be
considered and is characterized by the third Chern number.

B. Class D, BDI: Fermion parity pump

Adiabatic cycles of point defects in class D and BDI are
characterized by a Z2 topological invariant. In this section we
will argue that a nontrivial pumping cycle transfers a unit of
fermion parity to the point defect. This is intimately related
to the Ising non-Abelian statistics associated with defects
supporting Majorana bound states.

Like the point defect in class DIII ��=1�, the temporal
pump ��=0� in class D occupies an entry in Table I similar to
the line defect ��=2� in class AII so we expect a formula that
is similar to the formula for the 2D quantum spin-Hall insu-
lator. This is indeed the case, though the situation is slightly
more complicated. The Hamiltonian H�k ,r , t� is defined on a
base space Td�Sd−1�S1. In Appendix F we will show that
the invariant can be written in a form that resembles Eq.
�3.25�

� =
id

d!�2��d��
T1/2

Tr�Fd� − �
�T1/2

Q2d−1mod 2,

�5.2�

where T1/2 is half of the base manifold, say, k1� �0,��, and
the Chern-Simons form Q2d−1 is generated by a continuous
valence frame uv�k ,r , t� 
k1=0,� that obeys certain particle-
hole gauge constraint. This is more subtle than the time-
reversal gauge condition in Eq. �3.24� for line defects in AII
and point defects in DIII. Unlike Eq. �3.24�, we do not have
a computational way of checking whether or not a given
frame satisfies the constraint. Nevertheless, it can be defined,
and in certain simple examples, the particle-hole constraint is
automatically satisfied.

The origin of the difficulty is that unlike time-reversal
symmetry, particle-hole symmetry connects the conduction
and valence bands. The gauge constraint therefore involves
both. Valence and conduction frames can be combined to
form a unitary matrix

Gk,r,t = � 
 

uv�k,r,t� uc�k,r,t�


 

� � U�2n� . �5.3�

The orthogonality of conduction and valence band states im-
plies that

Gk,r,t
† 
G−k,r,t = 0. �5.4�

In general, we call a frame G :�T1/2→U�2n� particle-hole
trivial if it can continuously be deformed to a constant while
satisfying Eq. (5.4) throughout the deformation. The Chern
Simons term in Eq. �5.2� requires a gauge that is built from
the valence-band part of a particle-hole trivial frame.

Though the subtlety of the gauge condition makes a gen-
eral computation of the invariant difficult, it is possible to
understand the invariant in the context of specific models.
Consider, a theory based on a point defect in the
d-dimensional version of Eq. �4.6�

TABLE IV. Symmetry classes that support nontrivial charge or
fermion parity pumping cycles.

Symmetry Topological classes Adiabatic Pump

A Z Charge

AI Z Charge

BDI Z2 Fermion parity

D Z2 Fermion parity

AII 2Z Charge Kramers doublet
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H�k,r,t� = v�� · k + �� · �� �r,t� . �5.5�

Here �� and �� are 2d�2d Dirac matrices, and we suppose that
for fixed t, the d-dimensional mass vector �� �r , t� has a point
topological defect at r0�t�. If Ref. 53 we argued that adiabatic
cycles for such point defects are classified by a Pontrjagin
invariant similar to that discussed in Sec. IV B 3. This may
also be understood in terms of the rotation of the “orienta-
tion” of the defect. Near the defect, suppose �� �r , t�=O�t��r
−r0�t��, where O�t� is a time-dependent O�d� rotation. In the
course of the cycle, the orientation of the topological defect,
characterized by O�t� goes through a cycle. Since for d�3,
�1�O�d��=Z2, there are two classes of cycles. As shown in
Ref. 53, the nontrivial cycle, which corresponds to a 2�
rotation changes the sign of the Majorana fermion wave
function associated with the topological defect. We will ar-
gue below that this corresponds to a change in the local
fermion parity in the vicinity of the defect. For d=2,
�1�O�2��=Z. However, the change in the sign of the Majo-
rana bound state is given by the parity of the O�2� winding
number. In theories with more bands, it is only this parity
that is topologically robust.

In d=1, the single � matrix in the two-band model does
not allow for continuous rotations. Consider instead Kitaev’s
model38 for a 1D topological superconductor with at time-
dependent phase

H�k,t� = �t cos k − ���z + �1�t�sin k�x + �2�t�sin k�y .

�5.6�

In this case it is possible to apply the formula �5.2� because
on the boundary �T, which is k=0 or k=� the Hamiltonian is
independent of t, so that the gauge condition in Eq. �5.4� is
automatically satisfied. Moreover, the second term in Eq.
�5.2� involving the Chern Simons integral is equal to zero so
that the invariant is simply the integral of F�x , t� over T1/2. It
is straightforward to check that this gives �=1.

In order to see why this corresponds to a pump for fer-
mion parity, suppose a topological superconductor is broken
in two places, as shown in Fig. 9. At the ends where the
superconductor is cut there will be Majorana bound states.
The pair of bound states associated with each cut defines two
quantum states which differ by the parity of the number of
electrons. If the two ends are weakly coupled by electron
tunneling then the pair of states will split. Now consider
advancing the phase of the central superconductor by 2�. As
shown in Refs. 38 and 83, the states interchange as depicted
in Fig. 9. The level crossing that occurs at � phase difference
is protected by the conservation of fermion parity. Thus, at
the end of the cycle, one unit of fermion parity has been
transmitted from one circled region to the other. The pump-
ing of fermion parity also applies to adiabatic cycles of point
defects in higher dimensions and is deeply connected with
the Ising non-Abelian statistics associated with those
defects.53

VI. CONCLUSION

In this paper we developed a unified framework for clas-
sifying topological defects in insulators and superconductors

by considering Bloch/BdG Hamiltonians that vary adiabati-
cally with spatial �and/or temporal� parameters. This led to a
generalization of the bulk-boundary correspondence, which
identifies protected gapless fermion excitations with topo-
logical invariants characterizing the defect. This leads to a
number of additional questions to be addressed in future
work.

The generalized bulk-boundary correspondence has the
flavor of a mathematical index theorem, which relates an
analytic index that characterizes the zero modes of a system
to a topological index. It would be interesting to see a more
general formulation of this relation86,87 that applies to the
classes without chiral symmetry that have Z2 invariants and
goes beyond the adiabatic approximation we used in this
paper. Though the structure of the gapless modes associated
with defects make it clear that such states are robust in the
presence of disorder and interactions, it would be desirable
to have a more general formulation of the topological invari-
ants characterizing a defect that can be applied to interacting
and/or disordered problems.

An important lesson we have learned is that topologically
protected modes can occur in a context somewhat more gen-
eral than simply boundary modes. This expands the possibili-
ties for engineering these states in physical systems. It is thus
an important future direction to explore the possibilities for
heterostructures that realize topologically protected modes.
The simplest version of this would be to engineer protected
chiral fermion modes using a magnetic topological insulator.
The perfect electrical transport in such states could have far
reaching implications at both the fundamental and practical
level. In addition, it is worth considering the expanded pos-
sibilities for realizing Majorana bound states in supercon-
ductor heterostructures, which could have implications for
quantum computing.

Finally, it will be interesting to generalize these topologi-
cal considerations to describe inherently correlated states,
such as the Laughlin state. Could a fractional quantum-Hall
edge state arise as a topological line defect in a 3D system?

ϕ=0 ϕ ϕ=0(t)

E

ϕ (t)

2π0

fermion parity(a)

(b)

FIG. 9. A one-dimensional fermion parity pump based on a 1D
topological superconductor, which has Majorana states at its ends.
When the phase of the central superconductor is advanced by 2�
the fermion parity associated with the pairs of Majorana states in-
side each circle changes. Thus fermion parity has been pumped
from one circle to the other. �b� shows the evolution of the energy
levels associated with a weakly coupled pair of Majorana states as a
function of phase. The level crossing at �=� is protected by the
local conservation of fermion parity.
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Understanding the topological invariants that would charac-
terize such a defect would lead to a deeper understanding of
topological states of matter.
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APPENDIX A: PERIODICITY IN SYMMETRY
AND DIMENSION

In this appendix we will establish the relations in Eqs.
�2.5� and �2.6� between the K groups in different position-
momentum dimensions �D ,d� and different symmetry
classes s. We will do so by starting with an arbitrary Hamil-
tonian in KF�s ;D ,d� and then explicitly constructing new
Hamiltonians in one higher position or momentum dimen-
sion, which have a symmetry either added or removed. The
new Hamiltonians will then belong to KF�s+1;D ,d+1� or
KF�s−1;D+1,d�. The first step is to identify the mappings
and show they preserve the group structure. This defines
group homomorphisms relating the K groups. The next step
is to show they are isomporphisms by showing that the maps
have an inverse, up to homotopic equivalence.

1. Hamiltonian mappings

There are two classes of mappings: those that add sym-
metries and those that remove symmetries. These need to be
considered separately.

We consider first the symmetry removing mappings that
send a Hamiltonian Hc with chiral symmetry to a Hamil-
tonian Hnc without chiral symmetry. Suppose �Hc�k ,r� ,��
=0, where � is the chiral operator. Then define

Hnc�k,r,�� = cos �Hc�k,r� + sin �� �A1�

for −� /2���� /2. This has the property that at �= � /2
the new Hamiltonian is �, independent of k and r. Thus,
at each of these points we may consider the base space Td

�SD defined by k and r to be contracted to a point. The new
Hamiltonian is then defined on the suspension ��Td�SD� of
the original base space �see Fig. 10�. If we treat the original

base space as a d+D-dimensional sphere, then the suspen-
sion is a d+D+1-dimensional sphere.

Without loss of generality we assume Hc is flattened so
that Hc

2=1. Since �Hc ,��=0 it follows that Hnc
2 =1 as well.

The second term in Eq. �A1� violates the chiral symmetry.
Thus, if Hc belongs to the complex class AIII �with no anti-
unitary symmetries�, then Hnc belongs to class A. Equation
�A1� thus provides a mapping from class AIII to class A.

For the real classes, which have antiunitary symmetries,
the second term will violate either particle-hole symmetry or
time-reversal symmetry, depending on whether � is a mo-
mentum or position-type variable �odd or even under � and

�. This will lead to a new nonchiral symmetry class related
to the original class by either a clockwise or counterclock-
wise turn on the symmetry clock �Fig. 11�. To determine
which it is, note that if we require �� ,
�=0 then ��
�2

=�2
2= �−1��s−1�/2. The unitary chiral symmetry operator
�satisfying �2=1� can then be written

� = i�s−1�/2�
 . �A2�

It follows that if � is momentumlike, then time-reversal sym-
metry is violated when s=1 mod 4, while particle hole is
violated when s=3 mod 4. This corresponds to corresponds
to a clockwise rotation on the symmetry clock, s→s+1. If �
is position like then s→s−1.

We next build a chiral Hamiltonian from a nonchiral one
by adding a symmetry. This is accomplished by doubling the
number of bands in a manner similar to the doubling em-
ployed in the Bogoliubov de Gennes description of a super-
conductor. We thus write

Hc�k,r,�� = cos �Hnc�k,r� � �z + sin �1 � �a, �A3�

where a=x or y. Here �� are Pauli matrices that act on the
doubled degree of freedom. As in Eqs. �A1�, Eq. �A3� gives
a new Hamiltonian defined on a base space that is the sus-
pension of the original base space. If Hnc

2 =1 it follows that
Hc

2=1 so the energy gap is preserved. It is also clear that the
new Hamiltonian has a chiral symmetry because it anticom-
mutes with �= i�z�a. Thus, if Hnc is in class A, then Hc is in
class AIII.

For the real-symmetry classes a=x or y must be chosen so
that the second term in Eq. �A3� preserves the original anti-
unitary symmetry of Hnc. This depends on the original anti-
unitary symmetry and whether � is chosen to be a momen-
tum or a position variable. For example, if Hnc has time-
reversal symmetry, �, and � is a momentum �position�
variable, then we require a=y �a=x�. In this case, Hc has the

θ
�/2

�/2

0

compactify

compactify

T d S D×

Σ(Td S )D×

FIG. 10. Suspension ��Td�SD�. The top and bottom of the
cylinder ��Td�SD�� �−� /2,� /2� are identified to two points.

0 17

4 35

26

0 17

4 35

26

FIG. 11. Hamiltonian mappings in Eqs. �A1� and �A3� are
drawn on the left and right clocks, respectively. Solid �dotted� ar-
rows represent addition of one momentum �spatial� dimension.
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additional particle-hole symmetry 
=�x� �
= i�y�� that
satisfies 
2=�2 �
2=−�2�. A similar analysis when Hnc has
particle-hole symmetry allows us to conclude that the sym-
metry class of Hc is given by a clockwise rotation on the
symmetry clock, s→s+1, when � is a momentum variable.
When � is a position variable, s→s−1 gives a counterclock-
wise rotation.

Equations �A1� and �A3� map a Hamiltonian into a new
Hamiltonian in a different dimension and different symmetry
class. It is clear that two Hamiltonians that are topologically
equivalent will be mapped to topologically equivalent
Hamiltonians since the mapping can be done continuously
on a smooth interpolation between the original Hamiltonians.
Thus, Eqs. �A1� and �A3� define a mapping between equiva-
lence classes of Hamiltonians. Moreover, since the direct
sum of two Hamiltonians is mapped to the direct sum of the
new Hamiltonians, the group property of the equivalence
classes is preserved. Equations �A1� and �A3� thus define a
K-group homomorphism

KF�s;D,d� → KF�s + 1;D,d + 1� , �A4�

KF�s;D,d� → KF�s − 1;D + 1,d� �A5�

for F=R ,C.

2. Invertibility

In order to establish that Eqs. �A4� and �A5� are isomor-
phisms we need to show that there exists an inverse. This is
not true of the Hamiltonian mappings. A general Hamiltonian
cannot be built from a lower dimensional Hamiltonian using
Eqs. �A1� and �A3�. However, we will argue that it is pos-
sible to continuously deform any Hamiltonian into the form
given by Eq. �A1� or �A3�. Thus, the mappings between
equivalence classes have an inverse. To show this we will
use a mathematical method borrowed from Morse theory.67

Without loss of generality we again consider flattened
Hamiltonians having equal number of conduction and va-
lence bands with energies 1. Consider H�k ,r ,��, where
�� �−� /2,� /2� is either a position or momentum variable
and H is independent of k and r at �= � /2. We wish to
show that H�k ,r ,�� can be continuously deformed into the
form �A1� or �A3�. To do so we define an artificial “action”

S�H�k,r,��� =� d�ddkdDr Tr���H��H� . �A6�

S can be interpreted as a “height” function in the space of
gapped symmetry preserving Hamiltonians. Given any
Hamiltonian there is always a downhill direction. These
downhill vectors can then be integrated into a deformation
trajectory. Since the action is positive definite, it is bounded
below. The deformation trajectory must end at a Hamiltonian
that locally minimizes the action.

Under the flatness constraint H2=1, minimal Hamilto-
nians satisfy the Euler-Lagrange equation

��
2H + H = 0. �A7�

The solutions must be a linear combination of sin � and
cos �. The coefficient of sin � must be constant because the

base space is compactified to points at �= � /2. A minimal
Hamiltonian thus has the form

H�k,r,�� = cos �H1�k,r� + sin �H0. �A8�

The constraint H�k ,r ,��2=1 requires

H0
2 = H1�k,r�2 = 1, �H0,H1�k,r�� = 0. �A9�

If H�k ,r ,�� is nonchiral, then Eq. �A8� is already in the
form of Eq. �A1� with �=H0 and Hc�k ,r�=H1�k ,r�. H1
automatically has chiral symmetry due to Eq. �A9�. This
shows that Eqs. �A4� and �A5� are invertible when s is odd.

If H�k ,r ,�� is chiral, then both H0 and H1�k ,r� anticom-
mute with the chiral symmetry operator �. Rename H0=�a
and �= i�z�a, where a=x �a=y� when � is a position �mo-
mentum� variable. It follows that �H1 ,�x�= �H1 ,�y�=0 so we
can write

H1�k,r� = h�k,r� � �z. �A10�

Equation �A8� thus takes the form of Eq. �A3� with Hnc=h.
Since �z anticommutes with either � or 
, h�k ,r� carries
exactly one antiunitary symmetry and is therefore nonchiral.
This shows that Eqs. �A4� and �A5� are invertible when s is
even.

APPENDIX B: REPRESENTATIVE HAMILTONIANS
AND CLASSIFICATION BY WINDING NUMBERS

In this appendix we construct representative Hamiltonians
for each of the symmetry classes that are built as linear com-
binations of Clifford algebra generators that can be repre-
sented as anticommuting Dirac matrices. This allows us to
relate the integer topological invariants, corresponding to the
Z and 2Z entries in Table I, to the winding degree in maps
between spheres. Similar construction for defectless bulk
Hamiltonians can be found in Ref. 68 by Ryu, et al.. In
general, Hamiltonians do not have this specific form. How-
ever, since each topological class of Hamiltonians includes
representatives of this form, it is always possible to smoothly
deform H�k ,r� into this form.

The simplest example of this approach is the familiar case
of a two-dimensional Hamiltonian with no symmetries �class
A�. A topologically nontrivial Hamiltonian can be repre-
sented as a 2�2 matrix that can be expressed in terms of
Pauli matrices as H�k�=h�k� ·�� . The Hamiltonian can then

be associated with a unit vector d̂�k�=h�k� / 
h�k�
�S2. It is
then well known that the Chern number characterizing H�k�
in two dimensions is related to the degree, or winding num-
ber, of the mapping from k to S2. This approach also applies
to higher Chern numbers characterizing Hamiltonians in
even dimensions d=2n. In this case, a Hamiltonian that is a
combination of 2n+1 2n�2n Dirac matrices, and can be as-

sociated with a unit vector d̂�S2n.
For the complex chiral class AIII, the U�n� winding num-

ber characterizing a family of Hamiltonians can similarly be
expressed as a winding number on spheres. For example, in
d=1, a chiral Hamiltonian can be written H�k�=hx�k��x

+hy�k��y �so �H ,�z�=0�, and is characterized by d̂�k��S1.
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The integer topological invariant can then be expressed by

the winding number of d̂�k�. Similar considerations apply to
the integer invariants for chiral Hamiltonians in higher odd
dimensions.

For the real symmetry classes we introduce “position-
type” Dirac matrices �� and “momentum-type” Dirac matri-
ces �i. These satisfy ��� ,���=2���, ��i ,� j�=2�ij, and
��� ,� j�=0, and are distinguished by their symmetry under
antiunitary symmetries. If there is time-reversal symmetry
we require

���,�� = ��i,�� = 0 �B1�

while with particle-hole symmetry

���,
� = ��i,
� = 0. �B2�

For a Hamiltonian that is a combination of p momentumlike
matrices �1,. . .,p and q+1 positionlike matrices �0,. . .,q

H�k,r� = R�k,r� · �� + K�k,r� · �� �B3�

the coefficients must satisfy the involution

R�− k,r� = R�k,r� , �B4�

K�− k,r� = − K�k,r� . �B5�

This can be characterized by a unit vector

d̂�k,r� =
�K,R�

�
K
2 + 
R
2
� Sp+q, �B6�

where Sp+q is a �p+q� sphere in which p of the dimensions
are odd under the involution in Eq. �B5�.

The symmetry class s of H�k ,r� is related to the indices
�p ,q� characterizing the numbers of Dirac matrices by

p − q = s mod 8. �B7�

To see this, start with a Hamiltonian H0=R0�k ,r��0 that
involves a single 1�1 position like “Dirac matrix” �0=1 so
�p ,q�= �0,0�. This clearly has time-reversal symmetry, with
�=K, and corresponds to class AI with s=0. Next, generate
Hamiltonians Hs with different symmetries s by using the
Hamiltonian mappings introduced in Appendix A. Both the
mappings in Eqs. �A1� and �A3� define a new Clifford alge-
bra with one extra generator that is either position or mo-
mentum type. The mappings that correspond to clockwise
rotations on the symmetry clock �s→s+1� introduce an ad-
ditional positionlike generator �p→p+1� while the map-

pings that correspond to counterclockwise rotations �s→s
−1� introduce an additional momentumlike generator �q
→q+1�. Equation �B7� follows because this procedure can
be repeated to generate Hamiltonians with any indices �p ,q�.
Some examples are listed in Table V.

The integer topological invariants in Table I �which occur
when s−� is even� can be related to the winding degree of

the maps d̂ :SD+d→Sp+q. This can be nonzero when the
spheres have the same total dimensions. In light of Eq. �B7�,
�p ,q� can always be chosen so that d+D= p+q. The antiuni-
tary symmetries impose constraints on the possible values of
these winding numbers, which depend on the relation be-
tween �=d−D and s= p−q.

The involutions on Sd+D and Sp+q have opposite orienta-
tions when �−s�2 or 6 mod 8, and therefore an involution
preserving map Sd+D→Sp+q can have nonzero winding de-
gree only when �−s�0 or 4 mod 8. Symmetry gives a fur-
ther constraint on the latter case. Consider a sphere map
S�,�

2 →S�,�
2 , where the involutions on the spheres send

�� ,��� �� ,�+�� and �� ,��� �� ,��. In order for ��� ,��
=��� ,�+��, the winding number must be even. Together,
these show

deg � � Z for � − s � 0�mod 8�
2Z for � − s � 4�mod 8�
0 otherwise.

� �B8�

This gives a topological understanding of the Z’s and 2Z’s on
the periodic table in terms of winding number, which can be
identified with the more general analytic invariants, namely,
Chern numbers for nonchiral classes

n =
1

�d + D

2
�!
� i

2�
��d+D�/2�

Td�SD
Tr�F�d+D�/2� �B9�

and winding numbers of the chiral flipping operator q�k ,r�
for chiral ones �see Eqs. �4.1� and �4.2��.

n =
�d + D − 1

2
�!

�d + D�!�2�i��d+D+1�/2�
Td�SD

Tr��qdq†�d+D� .

�B10�

The Z2’s on the periodic table are not directly characterized
by winding degree but rather through dimensional reduction.

TABLE V. Examples of Dirac matrices for �p ,q�= �s ,0�.

Classes Dirac matrices Symmetry operators

s AZ �0 �� � 
 �

0 AI 1 K

1 BDI �z �y K �xK �x

2 D �z �y �x �xK

3 DIII �z�z �z�y �z�x �x i�y�xK �xK �y

4 AII �z�z �z�y �z�x �x �y i�y�xK
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Given a Hamiltonian H�k ,k1 ,k2 ,r� with s�� mod 8, its
winding degree mod 2 determines the Z2 classification of
its equatorial offspring Hk2=0�k ,k1 ,r� and Hk1,2=0�k ,r�. For
example, topological insulators in two and three dimensions
are equatorial restrictions of a four-dimensional model

d̂ :S4→
=

S4 with unit winding number. Around the north pole,
the Hamiltonian has the form

H�k,k4� = �m +  k2��1 + k · �3�� + k4�2 �B11�

and on the equator k4=0, this gives a three-dimensional
Dirac theory of mass m around k=0 that locally describes
3D topological insulators Bi2Se3 and Bi2Te3 around �.

APPENDIX C: ZERO MODES IN THE HARMONIC
OSCILLATOR MODEL

We present exact solvable soliton states of Dirac-type de-
fect Hamiltonians. These include zero modes at a point de-
fect of a Hamiltonian in the chiral class AIII and chiral
modes along a line defect of a Hamiltonian in the nonchiral
class A. We establish the connection between the two kinds
of boundary modes through the Hamiltonian mapping in Eq.
�A1�.

A nontrivial chiral Hamiltonian isotropic around a point
defect at r=0 is a Dirac operator

H = − i�� · �+ r · �� , �C1�

where the chiral operator is �= id� j=1
d � j� j and its adiabatic

limit e−ik·rHeik·r=k ·�� +r ·�� has unit winding degree on
S2d−1= ��k ,r� :k2+r2=1�.

H2 = − �2 + r2 − i�� · �� �C2�

and the spectrum is determined by the quantum numbers nj
�0 of the harmonic oscillator and the parities ! j of the mu-
tually commuting matrices i� j� j, for j=1, . . . ,d.

E2 = �
j=1

d

2nj + 1 − ! j . �C3�

The unique zero-energy state 
"0�, indexed by nj =0 and ! j
=1, has positive chirality �=+1, and is exponentially local-
ized at the point defect as "0�r��e−1/2r2

.
Next we consider a nonchiral Hamiltonian isotropic along

a line defect.

H�k�� = k�� − i�� · �+ r · �� , �C4�

where k� is parallel to the defect line, r and � are normal
position and derivative. Its adiabatic limit e−ik·rH�k��eik·r

=k��+k ·�� +r ·�� is related to that of Eq. �C1� by �1,1� peri-
odicity and has unit winding degree on S2d= ��k� ,k ,r� :k�

2

+ 
k
2+ 
r
2=1�. The zero mode 
"0� of Eq. �C1� gives rise
to a positive chiral mode, H�k��
"0�=k��
"0�=+k�
"0�
�Fig. 12�.

The two examples verified bulk-boundary correspondence
through identifying analytic information of the defect-bound
solitons and the topology of slowly spatial modulated theo-

ries far away from the defect. The single zero mode of Eq.
�C1� and spectral flow of Eq. �C4� are equated to unit wind-
ing degree of an adiabatic limit. In general, bulk-boundary
correspondence is mathematically summarized by index
theorems that associate certain analytic and topological indi-
ces of Hamiltonians.41,45,46,56,86,87

APPENDIX D: INVARIANT FOR POINT DEFECTS
IN CLASS D AND BDI

We follow the derivation given in Ref. 53, which was
based on Qi, Hughes, and Zhang’s formulation of the topo-
logical invariant characterizing a three-dimensional topologi-
cal insulator.10 For a point defect in d dimensions, the Hamil-
tonian H�k ,r� depends on d momentum variables and d−1
position variables. We introduce a one parameter deforma-

tion H̃�# ,k ,r� that connects H̃�k ,r� at #=0 to a constant
Hamiltonian at #=1 while breaking particle-hole symmetry.
The particle-hole symmetry can be restored by including a

mirror image H̃�# ,k ,r�=−
H�−# ,k ,r�
−1 for −1�#�0.
For #=, �k ,r� can be replaced by a single point, so the 2d
parameter space �# ,k ,r� is the suspension ��Td�Sd−1� of
the original space. The Hamiltonian defined on this space is
characterized by its dth Chern character

� =
1

d!
� i

2�
�d�

��Td�Sd−1�
Tr�Fd� . �D1�

Due to particle-hole symmetry, the contributions from the
two hemispheres #�0, #�0 are equal. Using the fact that
the integrand is the derivative of the Chern Simons form,
Tr�Fd�=dQ2d−1, we can therefore write

� =
2

d!
� i

2�
�d�

Td�Sd−1
Q2d−1. �D2�

As was the case in Refs. 10 and 53, � can be different for
different deformations H�# ,k ,r�. However, particle-hole
symmetry requires the difference is an even integer. Thus,
the parity of Eq. �D2� defines the Z2 invariant.

The Chern Simons form Q2d−1 can be expressed in terms
of the connection A via the general formula

k

E

FIG. 12. �Color online� Energy spectrum of Hamiltonian �C4�.
The zero mode 
"0� of positive chirality at k� =0 corresponds the
chiral mode that generates the midgap k�-linear energy spectrum.
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Q2d−1 = d�
0

1

dt Tr�A�tdA + t2A2�d−1� . �D3�

In the addition of time-reversal symmetry �2=1 or equiva-
lently a chiral symmetry �=��=�z, a valence frame of the
BDI Hamiltonian �4.1� can be chosen to be

u�k,r� =
1
�2

�q�k,r�
− 1

� , �D4�

where q is unitary and 1 is the identity matrix. This corre-
sponds the Berry connection A=u†du= 1

2q†dq and Chern-
Simons form

Q2d−1 =
d

2
�

0

1

dt� t

2
� t

2
− 1�d−1

Tr��q†dq�2d−1�

=
�− 1�d

2

d!�d − 1�!
�2d − 1�!

Tr��q†dq�2d−1� . �D5�

This equates the winding number of q in Eq. �4.2� to the
Chern Simons invariant in Eq. �4.9�.

APPENDIX E: INVARIANT FOR LINE DEFECTS
IN CLASS AII AND POINT DEFECTS IN DIII

We formulate a topological invariant that characterizes
line defects in class AII in all dimensions that is analogous to
the integral formula invariant characterizing the quantum
spin-Hall insulator introduced in Ref. 73. This can be applied
to weak topological insulators in three dimensions with dis-
location around a line defect. The invariant can be indirectly
applied to strong topological insulators through decomposi-
tion into strong and weak components. As a consequence of
the Hamiltonian mapping in Eq. �A1� that identifies �s
=4, �=2� and �s=3, �=1�, this gives a new topological
invariant that classified point defects in class DIII in all di-
mensions.

1. Line defects in class AII

The base space manifold is T2d−2=Td�Sd−2, where Td is
the Brillouin zone and Sd−2�R is a cylindrical neighborhood
that wraps around the line defect in real space. Divide the
base space into two pieces, T1/2

2d−2 and its time reversal coun-
terpart �see Fig. 13�a��. We will show the Z2 invariant

� =
id−1

�d − 1�!�2��d−1��
T1/2

2d−2
Tr�Fd−1� − �

�T1/2
2d−2

Q2d−3
�E1�

topologically classifies line defects in AII, where the Chern-
Simons form, defined by Eq. �D3�, is generated by the Berry
connection Amn= 	um�k ,r� 
dun�k ,r��, and the valence frame
um�k ,r� satisfies the gauge condition

wmn�k,r� = 	um�k,r�
�un�− k,r�� = constant �E2�

on the boundary �k ,r���T1/2
2d−2.

The nontriviality of the Z2 invariant is a topological ob-
struction to choosing a global continuous valence frame

um�k ,r�� that satisfies the gauge condition in Eq. �E2� on the
whole base space T2d−2. If there is no topological obstruction
from the bulk,88 the gauge condition forces the valence frame
to be singular at two points, depicted in Fig. 13�b�, related to
each other by time reversal. One removes the singularity by
picking another valence frame locally defined on two small
balls enclosing the two singular points, denoted by B in Fig.
13�b�. We therefore have two valence frames 
um

A/B�k ,r�� de-
fined on two patches of the base space, A=T2d−2 \B and B,
each obeying the gauge condition in Eq. �E2�.

The wave functions on the two patches translate into each
other through transition function

tmn
AB�k,r� = 	um

A�k,r�
un
B�k,r�� � U�k� �E3�

on the boundary �B�S2d−3�S2d−3. The function behavior on
the two disjoint �2d−3� spheres is related by time reversal.
The topology is characterized by the winding of tAB :S2d−3

→U�k� on one of the spheres

� =
�d − 2�!

�2d − 3�!�2�i�d−1�
S2d−3

Tr��tABd�tAB�†�2d−3� , �E4�

=
�− 1�d

�d − 1�!�2�i�d−1�
S2d−3

�Q2d−3
A − Q2d−3

B � . �E5�

The two integrals can be evaluated separately. Since
dQ2d−3=Tr�Fd−1�, Stokes’ theorem tells us

�
A�T1/2

2d−2
Tr�Fd−1� = ��

�T1/2
2d−2

− �
S2d−3

�Q2d−3
A ,

�
B�T1/2

2d−2
Tr�Fd−1� = �

S2d−3
Q2d−3

B .

Combining these into Eq. �E5� identifies the Z2 invariant in
Eq. �E1� with the winding number of the transition function.

The curvature term in Eq. �E1� is gauge invariant. Any
gauge transformation on the boundary �T1/2

2d−2 respecting the
gauge condition in Eq. �E2� has even winding number and
would alter the Chern-Simons integral by an even integer.
The gauge condition is therefore essential to make the for-
mula nonvacuous.

A

B

1/2
2d–2

∂T

B

(a) (b)

k = 0d k = �dk = -�d

T

1/2
2d–2

T
d
−1

×
S

d
−2

FIG. 13. �a� Schematic of the base space T2d−2=Td�Sd−2, split
into two halves. �b� Division of T2d−2 into patches A and B, each
closed under TR and has an individual valence frame 
um

A/B� that
satisfies the gauge condition in Eq. �E2�.

JEFFREY C. Y. TEO AND C. L. KANE PHYSICAL REVIEW B 82, 115120 �2010�

115120-22



Spin Chern number

A quantum spin-Hall insulator is characterized by its spin
Chern number n�= �n↑−n↓� /2. We generalize this to time-
reversal invariant line defects of all dimensions by equating
it with Eq. �E1�. This applies in particular to a model we
considered for a linear Josephson junction in Sec. III D.

A spin operator S is a unitary operator, square to unity,
commutes with the Hamiltonian, and anticommutes with the
time reversal operator. The valence spin frame


um
↓ �k,r�� = �
um

↑ �− k,r�� �E6�

automatically satisfies the time reversal gauge constraint in
Eq. �E2�. It is straightforward to check that the curvature and
Chern-Simons form can be split as direct sums according to
spins.

F�k,r� = F↑�k,r� � F↑�− k,r��, �E7�

Q2d−3�k,r� = Q2d−3
↑ �k,r� � Q2d−3

↑ �− k,r��. �E8�

Again assuming that there is no lower dimensional “weak”
topology, the ↑ frame can be defined everywhere on T2d−2

with a singularity at one point, say, in T1/2
2d−2, and the ↓ frame

is singular only at the time reversal of that point.
The curvature term of Eq. �E1� splits into two terms

�
T1/2

2d−2
Tr�Fd−1� = ��

T1/2
2d−2

− �
T2d−2\T1/2

2d−2
Tr�F↑

d−1� �E9�

and the two spin components of the Chern-Simons term
��T1/2

2d−2Q2d−3 add up into

2�
�T1/2

2d−2
Q2d−3

↑ = − 2�
T2d−2\T1/2

2d−2
Tr�F↑

d−1� �E10�

by Stokes theorem.
Combining these two, we equate Eq. �E1� to the spin

Chern number

n↑ =
id−1

�d − 1�!2�d−1�
T2d−2

Tr�F↑
d−1� . �E11�

Time reversal requires ntot=n↑+n↓=0 and therefore n�= �n↑
−n↓� /2=n↑.

2. Point defects in class DIII

The base space manifold is T2d−1=Td�Sd−1. The Hamil-
tonian mapping in Eq. �A1� relates a point-defect Hamil-
tonian H�k ,r� in class DIII to a line-defect Hamiltonian
H�k ,r ,��=cos �H�k ,r�+sin �� in class AII, where �
= i�
 is the chiral operator, �k ,r ,����T2d−1 �see Fig.
14�a�� and � is odd under time reversal. The line defect
Hamiltonian H�k ,r ,�� is topologically characterized by the
generalization of Eq. �E1�, which was proven to be identical
to the winding number in Eq. �E4� of the transition function
tAB �see Fig. 14�b� for the definition of patches A and B�. We
will utilize this to construct a topological invariant that char-
acterizes point defects in class DIII.

Set �=�yK and 
=�xK under an appropriate choice of
basis. A canonical valence frame of H�k ,r ,�� can be chosen
to be

u+
B�k,r,�� =�sin��

4
−
�

2
�q�k,r�

− cos��
4

−
�

2
�1 � , �E12�

where q�k ,r��U�k� is from the canonical form of the chiral
Hamiltonian H�k ,r� in Eq. �4.1�, 1 is the k�k identity ma-
trix, and the valence frame is nonsingular everywhere except
at �=−� /2. There is a gauge transformation u+

B→uA=u+
BtBA

everywhere except �= � /2 such that the new frame uA

satisfies the gauge condition in Eq. �E2�.89 A valence frame
on patch B can be constructed by requiring u−

B���=�u+
B�−��

around �=−� /2.
The Z2 topology is characterized by the evenness or odd-

ness of the winding number of tAB as in Eq. �E4�. This can be
evaluated by the integral along the equator �=0

�̃ =
�d − 1�!

�2d − 1�!�2�i�d�
Td�Sd−1

Tr��tABd�tAB�†�2d−1� ,

�E13�

where uA=u+
BtBA is a solution to the gauge condition in Eq.

�E2� or equivalently tBA satisfies

q�k,r� = tBA�− k,r��yt
BA�k,r�T, �E14�

where the constant in Eq. �E2� is chosen to be i�y.
The winding number in Eq. �E13� can also be expressed

as a Chern-Simons integral.

�̃ =
id

d!�2��d�
Td�Sd−1

�Q2d−1
B − Q2d−1

A � , �E15�

where QA/B are the Chern-Simons form generated by valence
frames uA/B. Restricted to �=0, Eq. �E12� gives uB�k ,r�
= 1

�2
�q�k ,r� ,−1�. Following Eq. �D5�, the first term of Eq.

�E15� equals half of the winding number of q, which is guar-
anteed to be zero by time-reversal and particle-hole symme-
tries. And therefore point defects in DIII are classified by the
Chern-Simons invariant

θ�/2

�/2

0 2d–1T A

B

B

(a) (b)

FIG. 14. �a� Schematic of the suspension �T2d−1. �b� Decompo-
sition into patches A and B.
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�̃ =
1

d!
� i

2�
�d�

Td�Sd−1
Q2d−1 mod 2, �E16�

where the Chern-Simons form is generated by a valence
frame that satisfies the time-reversal gauge constraint in Eq.
�E2�.

Note that the integrality of the Chern-Simons integral in
Eq. �E16� is a result of particle-hole symmetry. Forgetting
time reversal symmetry, point defects in class D are classi-
fied by the Chern-Simons invariant �=2�̃ in Eq. �D2� with a
factor of 2. Time-reversal symmetry requires the zero modes
to form Kramers doublets and therefore �=2�̃ must be even.
A gauge transformation in general can alter �̃ by any integer.
Thus, similar to the formula in class AII, the time-reversal
gauge constraint in Eq. �E2� is essential so that Eq. �E16� is
nonvacuous.

Fixed points formula in 1D

We here identify Eq. �E16�, or equivalently Eq. �E13�, to
a fixed point invariant in 1 dimension. In Ref. 82, Qi,
Hughes, and Zhang showed that 1D time reversal invariant
superconductors are Z2 classified by the topological invariant

�− 1��̃ =
Pf�qk=��
Pf�qk=0�

exp�1

2
�

0

�

Tr�qkdqk
†� �E17�

under the basis �=�yK and 
=�xK, where qk is the chiral
flipping operator in Eq. �4.1�. Time-reversal and particle-hole
symmetries requires qk=−q−k

T . Hence the Pfaffians are well
defined as qk is antisymmetric at the fixed points k=0,�.

Using the gauge condition in Eq. �E14�, we can expressed
the Pfaffians as Pf��qk=0,��=det�tk=0,��Pf��y�, where tk

BA is
abbreviated to tk.

Pf�qk=��
Pf�qk=0�

= exp�− �
0

�

Tr�tkdtk
†� . �E18�

Substitute Eq. �E14� into the Cartan form Tr�qkdqk
†� gives

Tr�qkdqk
†� = Tr�t−kdt−k

† � + Tr�tkdtk
†� . �E19�

Combining these into Eq. �E17�

�− 1��̃ = exp�1

2
�

0

�

Tr�t−kdt−k
† − tkdtk

†� , �E20�

=exp�−
1

2
�

−�

�

Tr�tkdtk
†� , �E21�

which agrees Eq. �E13�.

APPENDIX F: INVARIANT FOR FERMION
PARITY PUMPS

In the appendix, we will show that a Z2 invariant in Eq.
�5.2� under a particle-hole gauge constraint topologically
classified fermion parity pumps in dimension �=0 and class
D or BDI. �See Sec. V B for the full statement.� We will
show Eq. �5.2� using a construction similar to a reasoning in
Moore and Balents.7 We consider a deformation of the
Hamiltonian along with the base manifold so that the bound-
ary �T1/2 is deformed into a single point �see Fig. 15�. Let
s� �0,1� be the deformation variable, and denote T1/2

+ �s� and
�T1/2�s� be the corresponding deformation slices. Chern in-
variant

n =
1

d!
� i

2�
�d�

T1/2
+ �s=1�

Tr�Fd� �F1�

integrally classifies Hamiltonians on the half-manifold
T1/2

+ �s=1�. Particle-hole symmetry requires opposite Chern
invariant on the other half. A different choice of deformation
could only change the Chern invariant by an even integer.90

Hence the Chern invariant modulo 2 defines a Z2 invariant.
The Chern integral can be further deformed and decom-

posed into

�
T1/2

+ �s=0�
Tr�Fd� + �

0

1

ds�
�T1/2

+ �s�
Tr�Fd�

= �
T1/2

+ �s=0�
Tr�Fd� − �

�T1/2
+ �s=0�

Q2d−1, �F2�

where Stokes’ theorem is used and the negative sign is from
a change in orientation of the boundary. This proves Eq.
�5.2�. The particle-hole gauge constraint is built-in since the
Gk,r,t�s� deforms into a constant at s=1 while respecting
particle-hole symmetry in Eq. �5.4� at all s.
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