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ABSTRACT 
 

This note provides the weak-instrument asymptotic distributions of Hahn and Hausman’s 
(2002) tests for instrument validity.  These distributions are used to compute asymptotic 
rejection rates when instruments are weak and, as a special case, irrelevant.  These tests 
were proposed as pretests, and the asymptotic properties of post-test inferences, 
conditional on the tests failing to reject instrument validity, are also examined.  Monte 
Carlo simulations show that the weak-instrument asymptotic distributions provide good 
approximations to the finite sample distributions for samples of size 100. 

 
 
 

* We thank Gary Chamberlain and Jin Hahn for helpful discussions, and Jose Tessada for 
research assistance.  This research was supported by NSF grant SBR-0214131. 

 



1.  Introduction 

 

Hahn and Hausman (2002; henceforth HH) recently proposed a new test for the 

validity of inferences based on conventional first-order asymptotics in instrumental 

variables (IV) regression.  Consider the case of a single included endogenous regressor.  

If the instruments are valid, they reasoned, then standard first-order asymptotics implies 

that the two stage least squares (TSLS) estimator obtained by regressing one of the 

endogenous variables, y1, on the other, y2, should be close to the reciprocal of the TSLS 

estimator of the “reverse regression” of y2 on y1.  Accordingly, HH propose a statistic that 

is the difference between the forward TSLS estimator and the reciprocal of the reverse 

TSLS estimator, adjusted for second-order bias and standardized by a second-order 

expression for the variance of this difference.  They also propose a similarly motivated 

test statistic based on the Nagar (1959) – type bias adjusted TSLS (BTSLS) estimator of 

Donald and Newey (2001).  Hahn and Hausman (2002, 2003a) suggest that a test based 

on these statistics will reject if one or the other of the conditions for instrument validity 

fail, that is, if the instruments are weak and/or if they are endogenous. 

This note focuses on the first of these possibilities, in which the HH test is used as 

a test of the null hypothesis that instruments are strong against the alternative that they 

are weak.  Although HH report Monte Carlo results, we are unaware of asymptotic results 

about the power or consistency of the HH test against weak or irrelevant instruments.  

Accordingly, Section 2 provides the asymptotic distribution of the HH statistics for the 

case that sample is large but the instruments are weak or irrelevant.  Technically, this 

entails applying the weak-instrument asymptotics of Staiger and Stock (1997), in which 

the so-called “concentration parameter,” a standard unitless measure of the strength of the 

instruments and of the quality of the standard large-sample normal approximation (see 

Rothenberg (1984)), is held constant as the sample size increases.  The HH test was 

proposed as a pretest, and the weak-instrument limiting distribution of the HH statistic is 

joint with that of k-class estimators obtained in Staiger and Stock (1997);  in particular 

this provides the asymptotic distribution of k-class estimators, conditional on passing the 

HH pretest (that is, failing to reject the null hypothesis of strong instruments).  
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Section 3 provides numerical results for asymptotic power functions of the HH 

test against weak instruments and for the conditional distributions of two k-class 

estimators, the BTSLS estimator and Fuller’s (1977) estimator, conditional on passing the 

HH pretest.  Because these results rely on weak-instrument asymptotics, a pertinent 

question is whether these asymptotic distributions provide good approximations to the 

finite-sample distribution of the HH statistic and the post-test estimators.  Accordingly, 

Section 4 reports the results of a Monte Carlo study, which finds that the weak-

instrument asymptotic distributions provide good approximations to these finite-sample 

distributions when there are at least 100 (in some cases, fewer) observations. 

The scope of this note is limited, and there is room for further work.  Although we 

focus on the case of two endogenous variables, these methods can be applied to the case 

of multiple endogenous variables.  In addition, we examine the power of these tests 

against weak instruments under the maintained assumption of instrument exogeneity; a 

complementary exercise would be to examine the power of the HH tests against 

endogenous instruments. 

 

2.  The HH Test Statistics and their Weak-Instrument Asymptotic 

Distributions 

 

Following HH, consider the IV regression model with a single endogenous 

regressor: 

 

y1 = y2β + u       (1) 

y2 = ZΠ  + v       (2) 

 

where y1 and y2 are n×1 vectors of the n observations on the two endogenous variables, Z 

is a n×K matrix of observations on the K instrumental variables, β is the unknown scalar 

coefficient of interest, Π is a K×1 unknown parameter vector, and u and v are n×1 vectors 

of i.i.d. errors with variances 2
uσ  and 2

vσ  and correlation ρ.   
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2.1  The HH Test Statistics 

Let ˆ
LIMLβ  denote the LIML estimator of β, let  denote the estimator of 2

,ˆu LIMLσ 2
uσ  

based on the LIML residuals, and let PZ = Z(Z′Z)–1Z′ and MZ = IK – PZ, where IK is the 

K×K identity matrix.  The HH TSLS-based test statistic is 

 

m1 = /1d̂ 1ŵ ,       (3) 

 

where1 
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The HH Nagar-based test statistic is 

 

m2 = /2d̂ 2ŵ ,       (4) 

 

where 
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Using second-order asymptotics, HH show that m1 and m2 have standard normal 

null distributions.  Experience since Hahn and Hausman (2002) was written suggests that 

the Nagar form of the test (the m2 statistic) is to be preferred to the TSLS form (m1); also, 

the Nagar form does not entail a bias correction, making it easier to apply. 

 

2.2  Weak Instrument Asymptotic Distribution 

Following Staiger and Stock (1997), the weak-instrument asymptotic distributions 

of m1 and m2 are obtained by modeling the coefficient matrix Π  as local to zero, 

specifically, by setting Π = C/ n , where C is a fixed matrix.  Under this nesting, the 

concentration parameter is 

 

µ2 = C′QZZC/ 2
vσ ,      (5) 

 

where QZZ = E(Z′Z/n).  If µ2 = 0, then the instruments are irrelevant and β is unidentified. 

Define the 2×2 matrices Σ  and B, where Σ 11 = Σ 22 = 1 and Σ 12 = Σ 21 = ρ and 

where B11 = µ2 and B12 = B21 = B22 = 0.  Define Ψ  to be a 2×2 random matrix with a 

noncentral Wishart distribution with K degrees of freedom, covariance matrix Σ , and 

noncentrality matrix B, and denote the elements of Ψ as 

 

Ψ = 1 2

2 3

ν ν
ν ν
 

 
 

                                                                                                                                                

.        (6)  

 

It follows from Lemma A1 and Theorem 1 in Staiger and Stock (1997) that the 

following limits hold jointly: 

 

 
ˆ ˆ1 The expression for Ξ  given here is obtained by substituting α /(1 – ) = (K – 1)/(n – α̂
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(y1′PZy1, y2′PZy1, y2′PZy2) →  (
d

2
uσ H1, σuσvH2, 2

vσ ν1),   (7) 

(y1′MZy1/n, y2′MZy1/n, y2′MZy2/n) →  (
p

2
uσ J1, σuσvJ2, 2

vσ ), 

ˆ
LIMLβ  →  σu(

d
β  + ∆LIML)/σv, and 

2ˆLIMLσ  →
d

2
uσ SLIML, 

 

where β  = σvβ/σu, H1 = 2β ν1 + 2 β ν2 + ν3, H2 = β ν1 + ν2, J1 = 2β  + 2ρ β  + 1, J2 = β  

+ ρ, ∆LIML = (ν2 – ρ )/(ν1 – ), SLIML = 1 – 2ρ∆LIML + ∆ , and  is the 

smallest root of det(Ψ – κ

*
LIMLκ *

LIMLκ 2
LIML

*
LIMLκ

Σ ) = 0. 

Substitution of the expressions in the preceding paragraph into (3) and (4) yields 
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where Ξ* = (K – 1){H1 – (K – 1)J1 – J2[2H2 – (K – 1)J2] + J1ν1}. 

Remarks. 

1. Both test statistics m1 and m2 have Op(1) limits.  This suggests that neither test 

will reject with probability one asymptotically, regardless of the value of µ2, and 

in particular that neither test is consistent against nonidentification. 

2. Like the limiting representation (8) and (9) for the m1 and m2 statistics, the 

limiting representations for k-class estimators and test statistics obtained in 

Staiger and Stock (1997) follow from (7) and the subsequent (joint) limits.  It 

follows that the limiting representations for k-class estimators and test statistics 

obtained in Staiger and Stock (1997) are joint with (8) and (9), which in turn 

                                                                                                                                                 
ˆK), as used in HH equation (3.8), into the expression for Ξ  following HH equation (3.5). 
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makes it possible to evaluate numerically the distribution of a k-class statistic, 

conditional on passing the HH pretest (for example, conditional on |m1| ≤ 1.645). 

3. We followed HH by defining the m1 and m2 statistics using LIML to estimate 

incidental parameters in the second-order expressions, hence the appearance of 

 and  in the definitions following (3) and (4).  Other IV estimators can 

be used to estimate these nuisance parameters, however, and in fact numerical 

work suggests that LIML might not be the best choice because it is prone to 

outliers when instruments are weak.  It follows from the previous remark that 

weak-instrument limiting representations akin to (8) and (9) can be obtained using 

the joint limiting representation of a k-class estimator used instead of LIML to 

calculate the incidental parameters in m1 and m2 (we do not provide these limiting 

expressions here to conserve space).  Because LIML and other estimators are not 

consistent under weak-instrument asymptotics, the weak-instrument asymptotic 

distribution of m1 and m2 in general depends on the choice of estimator used to 

calculate the incidental parameters. 

ˆ
LIMLβ 4

,ˆu LIMLσ

 

3.  Asymptotic Power and Post-Test Estimator Performance:  

Numerical Results  
 

This section evaluates the asymptotic properties of the HH tests from two 

perspectives:  as a test for weak instruments, as measured by small values of the 

concentration parameter; and as a pretest in which the object of interest is subsequent 

post-test inferences based on an IV estimator.  The numerical results were computed by 

Monte Carlo evaluation of the weak-instrument limits (8) and (9) using 20,000 Monte 

Carlo draws of the noncentral Wishart random variable Ψ.  Following HH (footnote 5), 

we set var(y1i|Z i) = 1, 2
vσ  = var(y2i|Z i) = 1, and β  = –2ρ so that 2

uσ  = 1.  With this 

normalization, the distributions of m1 and m2 depend only on K, µ2, and ρ.  Throughout, 

Fuller’s (1977) estimator with c =1 is used to calculate the incidental parameters in m1 
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and m2, that is, with  and  replacing ˆ
Fullerβ 2

,ˆu Fullerσ ˆ
LIMLβ  and  in the definitions 

following (3) and (4).2 

2
,ˆu LIMLσ

 

3.1  Asymptotic Power for Small Values of the Concentration Parameter 

One definition of weak instruments is that instruments are weak when the 

concentration parameter is sufficiently small that conventional first-order asymptotics 

could result in misleading inferences (for further discussion see the survey by Stock, 

Wright, and Yogo (2002)).  Given this definition, the power of the HH test against weak 

instruments can be assessed by computing the rejection rate as a function of µ2/K and ρ;  

power should be high when µ2/K is small or zero and should equal the size of the test 

when µ2/K is large. 

Asymptotic rejection rates of the two HH tests, at the 10% significance level, are 

summarized in Figure 1 as a function of µ2/K for K = 5 and 30 and for ρ  = .9 and .5.    As 

a reference, the figure also plots the bias of the TSLS estimator;  under the normalization 
2
uσ  = 2

vσ  = 1 used here, the probability limit of the OLS estimator of β is ρ, which is also 

the asymptotic bias of the TSLS estimator in the unidentified case µ2/K = 0.  For 

example, for K = 5 and ρ = .5 (the second panel), when µ2/K = 2 the bias of TSLS is .13, 

so the bias of TSLS, relative to the inconsistency of OLS, is .13/.50 = 26%.  Thus, for 

values of µ2/K in the range plotted, TSLS bias typically is substantial. 

For the cases considered in Figure 1, the asymptotic power of the 10% HH tests 

against µ2/K < 2 ranges from 8% to 34%.  Generally speaking, the two tests perform 

similarly.  We have considered other values of K, ρ, and β , and the highest rejection rate 

we found was 34% (we did not conduct an exhaustive search however).  For 5% HH 

tests, the highest rejection rate we found was 27%. 

 

3.2  Asymptotic Performance as a Pretest 

                                                 
2 Fuller’s estimator with c =1 has moments for all values of µ2/K.  Hahn, Hausman, and 
Kuersteiner (2003) provide extensive numerical documentation of the good performance 
of this estimator, relative to other prominent IV estimators, under weak instruments. 
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HH developed the m statistics to be used as a pretest:  if the test fails to reject, 

then inference should proceed using an estimator that has good second-order properties, 

such as LIML or BTSLS (HH, p. 179) or Fuller’s estimator.  Viewed thus, the 

appropriate way to assess the performance of the statistics is to examine the reliability of 

post-test inferences based on first-order asymptotics for LIML, BTSLS, or Fuller’s 

estimator, conditional on the HH test failing to reject.  Because LIML can produce large 

outliers, we focus on post-test inferences – point estimates and hypothesis tests – based 

on BTSLS and Fuller’s estimator with c = 1.3 

Figure 2 presents the asymptotic median bias of BTSLS (a) conditional on |m1| ≤ 

1.645 and (b) conditional on |m2| ≤ 1.645 (we consider median instead of mean bias 

because moments of BTSLS are not guaranteed to exist).  As a benchmark, the figure 

also presents the unconditional asymptotic median bias of BTSLS, that is, the bias that 

would arise from using BTSLS without any pretest.  The conditional asymptotic 

distribution of the BTSLS estimator was computed by drawing (by Monte Carlo) from 

the joint weak-instrument asymptotic distribution of m1, m2, and the BTSLS estimator.  

As in Figure 1, the bias is presented as a function of µ2/K for various values of K and ρ.  

Figure 3 presents the corresponding asymptotic median bias of Fuller’s (c = 1) estimator.  

Comparing the (unconditional) TSLS bias in Figure 1 to the BTSLS and Fuller 

unconditional median bias in Figures 2 and 3 reveals that the BTSLS and Fuller 

estimators have substantially less bias than TSLS, at least for µ2/K > 2.  The median bias 

of the Fuller estimator is close to that of BTSLS, in some cases slightly larger, in others, 

slightly smaller.  There is essentially no difference between the conditional and 

unconditional BTSLS median bias curves, that is, the median bias of the BTSLS and 

Fuller estimators is essentially the same unconditionally or conditional on passing the HH 

pretest. 

Figure 4 presents the asymptotic null rejection rate (the asymptotic size) of a 

nominal 5% Wald test of the hypothesis β = β0 based on the BTSLS estimator and its 

                                                 
3 An estimator that could be used in the event that the HH statistic rejects is OLS, which 
can have lower MSE than TSLS if the instruments are invalid (see the discussion in Hahn 
and Hausman (2003b)), however here we do not examine inference conditional on failing 
the HH pretest. 

 8



standard error (computed using the standard k-class formula), both unconditionally and 

conditional on passing the HH test.  Analogous asymptotic null rejection rates are 

presented in Figure 5 for the Wald test based on the Fuller (c = 1) estimator.  For small 

values of µ2/K, the size distortions in both Wald tests can be substantial, especially in the 

ρ = .9 case, although the size distortions using either the BTSLS or Fuller Wald tests are 

much less than for the Wald test based on TSLS (Stock and Yogo (2002)).  As in Figures 

2 and 3, the conditional and unconditional Wald test size curves in Figures 4 and 5 are 

essentially the same. 

 

4.  Monte Carlo Results 

 

The foregoing conclusions were based on the weak-instrument asymptotic 

distribution of the HH and k-class statistics.  Here, we briefly summarize the results of a 

Monte Carlo experiment that examines whether the weak-instrument asymptotic 

distributions provide a good approximation to the finite-sample distributions of the HH 

statistic and to selected k-class statistics, conditional on passing the HH pretest.  The 

finite-sample results were computed using 1000 Monte Carlo draws for the system (1) 

and (2) with i.i.d. normal errors;  the parameter settings are the same as described in the 

first paragraph of Section 3.  The HH pretest is based on comparing the forward and 

reverse BTSLS estimator (the m2 statistic), where the incidental parameters are estimated 

using the Fuller (c = 1) estimator. 

The results are summarized in Table 1 (only a subset of the results are reported to 

save space).  First consider the “HH Rejection Rate” column.  For a given value of K and 

µ2/K, the finite sample rejection rates of the m2 statistic are close to each other and to the 

asymptotic limit for all values of n; by n = 100, the finite-sample rates generally are 

within Monte Carlo error of the asymptotic rejection rates. 

The final six columns of Table 1 report the RMSE of three k-class estimators, the 

Fuller (c = 1) estimator, LIML, and the BTSLS estimator, both unconditionally and 

conditional on passing the pretest (that is, conditional on |m2| ≤ 1.645).  First consider the 

results for the Fuller (c = 1) estimator.  The finite-sample RMSE is in most cases close to 
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the asymptotic RMSE for n = 50, and in all cases is close for n = 100.  Consistent with 

the asymptotic computations in Section 3, the Monte Carlo results confirm that, for K = 

5, the Fuller (c = 1) RMSE is essentially the same unconditionally and conditional on 

passing the pretest.  For K = 30 in the nearly unidentified case (µ2/K = .5), the RMSE of 

the Fuller estimator is approximately 6% less conditional on passing conditional on 

passing the pretest, compared to the unconditional RMSE; when µ2/K = 2, the conditional 

and unconditional RMSEs of the Fuller estimator are essentially the same.  The 

remaining four columns are more difficult to interpret because moments are not 

guaranteed to exist for LIML or for BTSLS, so these entries should be viewed just as 

measures of the spread of the sample of estimates obtained in the Monte Carlo draws.    

In the cases in which the finite-sample RMSEs are small and are comparable across 

sample sizes, they effectively converge to the asymptotic limit by n = 100. 

Comparing RMSEs across estimators reveals that the RMSEs for Fuller (c = 1) 

are always the smallest of the three estimators or are nearly so.  In several cases, the 

RMSEs of LIML and BTSLS are very large, indicative of nonexistent moments.  A 

practical implication, consistent with the extensive simulation results in Hahn, Hausman, 

and Kuersteiner (2003), is that using LIML and BTSLS in situations with weak 

instruments can yield very poor estimates because of the presence of outliers, and that 

inference based on the Fuller estimator is preferable when instruments are weak.  The HH 

pretest appears to be successful at screening severe LIML and BTSLS outliers.  Even so, 

within Monte Carlo error, the RMSE of the unconditional Fuller estimator is never 

greater than, and typically much less than, the RMSE of LIML and BTSLS, conditional 

on passing the HH pretest.  
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Table 1 

Monte Carlo Comparison of Finite Sample and Weak-Instrument Asymptotic Distributions: 

m2 HH Test Rejection Rates and Estimator RMSE’s with and without HH Pretest 

 

     RMSE for Fuller (c = 1) RMSE for LIML RMSE for BTSLS 

K µ2/K ρ       n R2 

HH Test 
Rejection Rate Uncond’l Cond’l Uncond’l Cond’l Uncond’l Cond’l

5        0.5 0.5 50 0.0476 0.128 0.579 0.578 24.027 5.395 196.478 1.310
5       0.5 0.5 100 0.0244 0.135 0.585 0.570 91.599 13.203 5.893 1.512
5        0.5 0.5 500 0.0050 0.139 0.593 0.585 9.663 7.702 6.666 1.516

5       0.5 0.5 ∞ 0.135 0.596 0.592 79.091 62.704 28.725 1.878
5        2.0 0.5 50 0.1667 0.098 0.351 0.339 2.535 0.630 1.175 0.671
5        2.0 0.5 100 0.0909 0.078 0.365 0.348 1.523 0.695 0.915 0.657
5        2.0 0.5 500 0.0196 0.085 0.354 0.339 4.365 4.084 2.815 0.658

5         2.0 0.5 ∞ 0.089 0.361 0.349 5.940 2.537 18.439 0.726
5        0.5 0.9 50 0.0476 0.221 0.542 0.547 6.205 4.565 5.374 1.742
5        0.5 0.9 100 0.0244 0.205 0.573 0.577 8.438 4.612 14.620 0.929
5        0.5 0.9 500 0.0050 0.240 0.550 0.548 18.152 1.771 9.527 0.935

5       0.5 0.9 ∞ 0.223 0.574 0.580 503.857 82.400 41.288 1.134
5        2.0 0.9 50 0.1667 0.099 0.284 0.283 1.217 0.711 8.973 0.682
5        2.0 0.9 100 0.0909 0.088 0.265 0.258 2.039 1.018 9.826 0.598
5        2.0 0.9 500 0.0196 0.101 0.267 0.266 1.298 0.710 9.506 0.677

5         2.0 0.9 ∞ 0.097 0.271 0.261 6.400 0.587 21.134 0.774
 
 
 
 

 



Table 1, ctd. 
 

     RMSE for Fuller (c = 1) RMSE for LIML RMSE for BTSLS 
K µ2/K ρ      n R2 

HH Test 
Rejection Rate Uncond’l Cond’l Uncond’l Uncond’l Cond’l Uncond’l

30            0.5 0.5 100 0.1304 0.065 0.532 0.498 3.538 2.652 2.515 1.554
30            0.5 0.5 200 0.0698 0.074 0.496 0.468 3.041 2.181 2.871 1.597
30            0.5 0.5 500 0.0291 0.087 0.510 0.475 1.943 0.989 3.152 2.523

30         0.5 0.5 ∞ 0.079 0.481 0.451 20.159 20.554 7.739 1.710
30            2.0 0.5 100 0.3750 0.069 0.174 0.171 0.187 0.181 0.189 0.188
30            2.0 0.5 200 0.2308 0.088 0.157 0.153 0.162 0.158 0.177 0.176
30            2.0 0.5 500 0.1071 0.116 0.158 0.152 0.165 0.157 0.179 0.178

30          2.0 0.5 ∞ 0.085 0.156 0.154 0.162 0.160 0.177 0.175
30            0.5 0.9 100 0.1304 0.095 0.320 0.304 12.896 0.974 33.008 1.201
30            0.5 0.9 200 0.0698 0.094 0.280 0.264 15.730 3.009 5.156 1.401
30            0.5 0.9 500 0.0291 0.126 0.296 0.285 0.968 0.886 20.550 1.377

30         0.5 0.9 ∞ 0.107 0.285 0.265 1.429 0.514 26.292 1.552
30            2.0 0.9 100 0.3750 0.079 0.138 0.139 0.147 0.147 0.221 0.199
30            2.0 0.9 200 0.2308 0.087 0.138 0.137 0.146 0.145 0.205 0.189
30            2.0 0.9 500 0.1071 0.126 0.137 0.135 0.145 0.143 0.216 0.186

30          2.0 0.9 ∞ 0.092 0.139 0.139 0.147 0.148 0.206 0.193
 
Notes:  The “HH Rejection Rate” is the fraction of times that the m2-based HH test, calculated using the Fuller (c = 1) estimator for the 

incidental parameters, rejects at the 10% significance level (that is,  |m2| > 1.645).  The final six columns report the RMSE of 
the indicated estimator, either unconditionally (without a pretest) or conditional on passing the HH pretest (that is, if |m2| ≤ 
1.645).  The finite-sample results were computed by Monte Carlo using 1000 draws, using the design described in the text; the 
results for n = ∞ were computed using 20,000 draws from the weak-instrument asymptotic distribution. 

 



 

 
 

Figure 1.  Asymptotic power of 10% HH tests using m1 (“TSLS”) and m2 (“Nagar”) 

against weak instruments, and the asymptotic bias of TSLS (solid line), as a function of 

the concentration parameter divided by the number of instruments (µ2/K) 

 

 

 



 

 

 
 

Figure 2.  Asymptotic median bias of BTSLS, conditional on acceptance of a 10% HH 

pretest 

“Cond HH (TSLS)” is conditional on |m1| ≤ 1.645 

“Cond HH (Nagar)” is conditional on |m2| ≤ 1.645 

 

 

 

 

 



 

 

 
 

Figure 3.  Asymptotic median bias of the Fuller estimator, conditional on acceptance of a 

10% HH pretest 

 

 



 

 
 

Figure 4.  Asymptotic size of the nominal 5% BTSLS-based Wald test of β = β0, 

conditional on acceptance of 10% HH pretest 

 

 



 

 
 

Figure 5.  Asymptotic size of the nominal 5% Fuller estimator-based Wald test of β = β0, 

conditional on acceptance of 10% HH pretest 
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