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ABSTRACT

TRIPTYCENE: A NUCLEIC ACID THREEWAY JUNCTION BINDERSCAFFOLD

Ina Yoon

David M. Chenoweth

Nucleic acids play a critical rolein many biological processs such as gene
regulationand replication The development of small molecules that modulate nucleic
acids with sequence or structure specificity would provide new strategies for regulating
disease staseat the nucleic acid level. However, this remains challenging mainly because
of the nonspecific interactions betweencleic acids and small moleculeBhreeway
junctions arecritical structural element®f nucleic acids They are present in many
important targets such as trinucleotide repeat jiomsrelatedtdiHu nt i ngt oabés di s
temper at u¥ o E.scelinBeongue viius, and HIV. Triptycerderived small
molecules havéeen shown to bind to nucle&xid threeway junctions, resultindgrom
their shape complementarjo develop a better understanding of deisigmnolecules for
targeting different junctionsa rapid screening of triptycefimsed small molecules is
neededWe envisioned that the installation of a linker at C9 position of theclicyore
would allow for a rapid solid phase diversification. To achieve this agsymthesized 9
substituted triptycene scaffolds by using two different synthetic rotibesfirst synthetic
route installed the linker from the amidation reaction bemvearboxylic acid at C9
position of the triptycene and an amine linkealanine ethyl estemhis new 9substituted
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triptycene scaffold was then attached to-ehBrotrityl chloride resin for soligghase
diversification. This enabled a rapid diversitioa and an easy purification of mondi-,
and tripeptide triptycene derivatives. The binding affinities of these compounds were
investigated towards (CAG)CTG) trinucleotide repeat junctiorin the modifiedsecond
synthetic routewe utilizeda comlined Heck coupling/benzyne Diefdder strategyThis
improved synthetic strategy reduced the number of steghsotal reaction times)creased
the overall yieldjmprovedsolubilities of intermediates, angrovideda new regioisomer
that was not obserdan the previous synthesiBhroughthis investigation, we discovered
new highaffinity lead compounds towardsd ( C A G) Ar{n@IlEdBderepeat junction
In addition, we turned our attention €2 mRNA, which contains &NA threeway
junctionin E. cdi. We demonstrated that triptycebased small molecude&an modulate

the heat shock responselncoli.
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CHAPTER 1 : INTRODUCTION



1.1 Background

Nuclec acids playa critical role in a number of blogical processesn 1958,
Francis Crick first introduced the concept of the central dogma of molecular biology, which
explains the flow of the genetic information fremcleicacids to proteins. He restataad
extendedthis theoryin his publication in 1976.According to the central dogma of
molecular biology, deoxyribonucleic acid (DNA) cagithe genetic information in most
biological systems. DNA is transcribed into ribonucleic acid (RNA), whiclthes
translated into protein(Figure 1.1). Although some exceptions such as rewverse
transcription from RNA to DNA have been found, genatiormation generallyflows

from DNA to RNA to protein.

DNA replication RNA replication

Transcription Translatlon
EE—
DNA ), RNA Protein
Reverse
transcription

Figure 1.1. Schematic representation of central dogma of molecular biology.

Despite the importance oficleic acidsn crucialbiological processes such as gene
expression and regulation, they hde=noverlooked as drug tartge Instead, early drug
discovery researcfocused on developing small molecules that taspetific proteins
including enzymes and receptdrs This trend was beause structural informatioon

nucleic acidswas limited compared to that of proteifisMoreover, RNA wadnitially
2



considered as passive intermediate in the process of converting DNA to protémthe
1980s, the discovery of catalytic RNA such as ribozymes, further implicated the
significance of RNAF!! Since then, there hal®en numenaes achievementi® nucleic
acid crystallographywhich provides new insights for the design of struchased ligands
targeting nucleic ac&f Additionally, the Encyclopedia Of DNAElements (ENCODE)
project expanded our knowledge about previously unkndumctions of norcoding
RNA. 25 With these finding, nucleic acids becamaterestingas under exploited drug
targets

Targeting nucleic acids could provide a better way of treating disease states because
nucleic acids are more closely related to gene expression and regulation than areteins
Although proteintargetshave draw much attention for several decadasery limited
number ofsuchproteintargets havéeen identified so faMostsuchprotein targets fall
into only six families G-proteincoupledreceptors (GPCRS), serine/threonine and tyrosine
protein kinases, zinmetallopeptidases, serine proteases, nuclear hormone receptors and
phosphodiesterasés'®Hangauer and coworkers estimated tiadut 85% of the human
genome is transcribed into RNA, but only less than 3% of these transcripts is translated
into protein'* The remaining transcripts that do not code for proteins areoding RNAS,
which are associated with a number of human disé&$€shereforethe development of
small molecules that target nucleic acidsuld potentially lead to thediscovey of
unexplored drug targetmked to diseases that were previoushdruggable at the protein

level.



1.2 Nucleic Acids

Nucleic acids arbiomacromoleculeand biopolymers of simpleonomes called
nucleotide. Levenediscoveredhat nucleotidearecomposed obne offour nucleobases,

a sugar, and a phosphate grqfgure 1.2).18 When the sgar is 2deoxyribog, the
biopolymer is called eloxyribonucleic acid (DNA)whereas when the sugar is ribose, the
biopolymer is cled ribonucleic acid (RNA) In additionto the difference irthe type of
sugar the nucleobastihymine (T) in DNAIs replaced bwracil (U) in RNA. Nucleobases

are categorized into two groupsurines and pyrimidinesAdenine (A) andyuanine (G)
arepurines while cytosine C), thymine (T), andrracil (U) arepyrimidines Figurel.2b).

Each nucleotide is conjugated togettigough a phosphodiester bond betwdea8 6 a n d
506 c ar b otheirsugaorimgs\Whema newDNA strand is elongted, a nucleotide is
added to théaydroxyl groupothe3 6 car bon of the teamd ntaod
3 directiorality to a nucleic acid stran@Figure1.2c).

DNA usually formsa double helix structure thugh WatsorCrick base pairing.
Generally, adenine pairs with thymine, increasing stability thrdogmation of two
hydrogen bonds, whereas guanine pairs with cytosine, increasing stability through
formation of three hydrogen dnds. In addition to hydrogen bonds, batscking
interactionsetweemucleobases also stabilize the DNA double helix strectuch that
the double helix structure is more fasble.

In contrast tathe DNA duplex structure, RNA is typically single atrded The

RNA single strand folds into different structural motifs such as bulges, loops, hairpins, and



junctions to increase its stability. Unlike DNA, mamstances ohoncanonical base

pairing have been observed in RNA secondary structures.

nucleobase’

(b) NH» (0]
N>y N NH
Purines </ f\ </ |
N N/) ﬁ N/)\NH

Adenine (A) Guanine (G)

NH,
Pyrimidines ﬁ\ E
Ao /& |

Cytosine (C) R' = CH3, Thymine (T) !
R" = H, Uracil (U)

R2=H, DNA
R2 = OH, RNA

Figure 1.2. (a) Structures of-2leoxyribose and ribose. (b) Structures of nucleobases: adenine (A),
guanine (G), cytosine (C), thymine (T),damracil (U). (c) Linkage between nucliédes through a
phosphate group.

1.3DNA Targeting Small Molecules

DNA has been considered as a fundameatgketfor small moleculegh medicnal
chemistry becauseis asource of the genetic information in biological systelespite a
number ofimportant roles oDNA in many diseasassociated processes, oaljpandful

of small molecules that targBtNA have beemliscovered and studietle to the lack of
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structural information © DNA. However, withthe tremendous progress in structural
biology and naleic acid chemistry, interactions between nucleic acids and their ligands
have beguto be unveiledinteractions between small molecules and nucleic acids can be
classified intofive categories covalent bond formationminor groove binding, major
groovebinding, intercalatingand multimodebinding**° It is also worth noting that the

majority of DNA-binding small molecules ka aromatic ring systems.

1.3.1 CovalentBinders

The most common interaction between small molecules and D&GAIrsvia
covalentbond formation, which ianirreversiblemodification onDNA. A small molecule
usually forms an adduct with DNAto changethe conformation of DNA. This
conformational chang@nterrups the function of DNAto inhibit the transcription or
replication process'® In generalcovalently binding moleculdsave poor selectivity and
exhibit high toxicity against normal cell$he most welknown example of covalent
binderis cisphtin (Figurel.3). Although cisplatin geerally causgsevere side effects such
as vomiting and nausea, this drug was approvetidifDA in1978 to treaseveral types
of cancer.The mechanism of action of cisplatin is the formation of clogs between
two adjacent basesither GG or GA (1,Antrastrand adduct), or between two guanines
separated by another base {ihBastrand adduc. More examples of small molecules

that covalently bind to DNA arghown inFigurel1.3.
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° O NH,
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2,7-diaminomitosene
AFB-FAPY

Figure 1.3. Small moleculeghat target DNAthrough covalent bond formation.

1.3.2 Minor Groove Binders

Small moleculesiot onlyform permanent covalent baswith DNA strand, they
alsointeract withtheminor groove of DNA strand. Initially, minor groovebinding small
molecules preferentially bound to Aich regions. Because minor groove binding offers
the highest sequence sgaxty between DNA and small molecule ligands, minor groove
binders have great potential as new therapetifiggoical structural features of minor
groove binders are heterocyclic dications and polyanfitfShemical structures of minor
groove binders such as berenil, DAPI, netropsin, Hoechst 33258 are shbigaril.4.
Interestingly,the unusual &ing cyclic Pylm polyamideU was shown to bind
duplex, widening the minor groove. This finding supported the concept of allosteric
changsto DNA conformationby minor groove binder¥’

7
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Figure 1.4. Small moleculeghat target DNAthrough binding to minor grooves.

1.33 Major Groove Binders

Compared to minor groove binders, very few major groove binders have been
exploredbecause of the requirement of rhdarger moleculeDue totheir size and their
hydrophilic and hydrophobic substructures, carbohydrates bind to the DNA major groove

aswell as to the DNA minor groove!t® Examples of small molecules that bind to DNA

8



major groove are summarized iRigure 1.5. Two neocarzinostatin derivatives,
neocarzinostathigb and neocarzinostatgiu, were used as ligds to the DNA duplex.
Interestingly, neocarzinostatgh binds to the major groove, but neocarzinostglin

binds to the minor groové:??

| OH
O OH NH,
N
{ . . HZN&E&OH
N neomycin-groove binder OH
/

neocarzinostatin

nogalamycin

Figure 1.5. Small moleculeghat target DNAthrough binding to major grooves



1.34 Intercalators

The fourth type of interaction between srhamolecules and DNA iscalled
intercalationPlanar aromatic rings aftercalatorsareusually inserted betweddNA base
pairsandinterrupt DNA replication and transcriptiéi® In general, intercalators bind to
the DNA duplex with high association cetants of 107 10" M™1* However, the
specificity of intercalation is low, making most intercalators toxic to normal &disie
interesting intercalators are shownHigure 1.6. Daunomycin, which isalsoknown as
Cerubidine, is an effective druf@r treating certain types ofleukemia. Furthermore
adriamycin, which has two extra hydroxyl grougdative todaunomycin, isalso an
anticancer drug® Ditercalinium which is a dimer of pyridocarbozole, bindstihe DNA

duplexvia abis-intercalation mode and induces DNA repair proesgstreat cancer.

1.35 Multimode Binders

Multimode binders have been designed to increase the affinity as well as the

specificity toward DNA by combining more than two binding modie2009,the Weisz

group reported a pyrrolo[2d][1,4]benzodiazepin®enzimidazole hybrid (PBBIMZ,

Figure 1.7) asa multimode bindef! This molecule is shown to bind tbe DNA duplex
through covalent bond foration to a guanine base at its exocycliar@ino group in
doublehelical DNA. At the same time, PBBIMZ also showsa minor groove binding
interaction withthe DNA duplex. A year laterthe Weisz group developed another
multimode binder, PBEnaphthalimide conjugate (Figure 1.7), which binds to

d(AACAATTGTT)2.2
10
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Figure 1.6. Small moleculeghat target DNAthrough intercalation.
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Figure 1.7. Small moleculeghat target DNAthrough multimode binding patterns.

11



1.4 Three-way Junctions

Threeway junctionsare importanthigh-order structure found in nucleic aals.
These junction motifs are present in both prokaryotes and eukarybtesway junctions
are typically ¥shaped and contain a hydrophobic space at the center of the juRifioa (
1.8A).262° DNA threewayjunctions are involved in a number of biological processes such
as replication and recombinatiéhin addition, they appear in the trinucleotide repeat
expansions related to neurodegetive diseases as welliassome DNA virus genomes.
RNA threeway junctions are present in a number of biologically important target
including t e¥oRNAINE&E.cdi thRiheknal rillosome entry site (IRES)
domain of the hepatitis C virus (HCMheh a mmer head r i bo z-YTRe, a f
junction inZika and Dengue viruses, and HIV RREigure1.8).3%4°

The junct i &mRNAreguaesnthbeat shockirespongeE. coli. At
30 €, the ribosomal binding site® f 32 niRNA is blocked near a perfectly pairddee
way junction (PP3WJ), inhibiting translation. At 42 €, the mRNA structure is
destabilized and thebosomal binding sites exposed, allowing for efficient translation of
032 protein>364¥5 The PR3WJ controls the thermodynamic stability ofstteritical
regulatory switcl*>° Modulation of this regulatory elementtime heat shock response in
E. coliwith small molecules would lead to a developmerd wdvel way to treat bacterial

diseases.
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- Trinucleotide Repeats - Hammerhead ribozyme

- Telomerase RNA - Flavivirus 3'-UTR
- 02 mRNA E. coli - HIV RRE
- HCV IRES domain 1IID
KEY:
(O = Nucleobase (O~O=Canonical or === = Sygar-phosphate
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base pair DNA or RNA
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\ (
(@= ) &3 )

Flavivirus 3-UTR

sigma 32 mRNA
(-19 to 229)

Stem |

Stem 1A

Stem [IB
Stem lIC

HIV RRE RNA

Figure 1.8. (A) A schematic representation of thre@y junctions and a few examples of
interesting biological targets that contain thvesy junctions. (B) A secondary structure of
biologically relevant thregvay junctions.

Trinucleotide repeats are assded with a large number (>30) of inherited human
muscular and neurological diseag&¥. The trinucleotide repeat tract length is dynamic
and often correlates with disease severity; tracts with few repeats are commonplace in the
nonaffected. Long trifet repeats are prone to further expansion as opposed to contraction
and are predisposed to generational transmisditfrstructural features in these RNAs

may determine if proteins are recruited for repaif:>1°?Ligands that bind tdhese

13



junctiors maythereforemodulate repair outcomesa protein recruitmentShifting the
equilibrium of the repeat expansion to a branched form could translate into a therapeutic
benefit by modulating repair pathways or protein bindiRgrther, Week and Busan
recertly discovered that a thregay junction is a unique structural feature that appears in
Hunt i ngt oasfosiated mRN&AI argeting threavay junctionsalready present
in trinucleotide repeat sequences has the potential to discriminate bétesddy and
diseasdanducing alleles, perhaps leading to novel treatment strategies for this class of
neurodegenerative disease.

The f | awirlR has ansinterésiing mulbulged junction. The flavivirus
genus contains many clinically important human pathsgrich as Zikd)engue, West
Nile, yellow fever, and Japanese encephalitis viruses. These viruses affect more than 50
million people around the world every ye&?£®>4® The flavivirus family has a conserved
l ong and hi g{TRthasreéguaiesrréplicationdand3génerates a functional
noncoding RNA, subgenomic flavivirus RNA (sfRNA). A uniquilereeway junction
structure of the SIL | d o maUiTR preivemts @@plete degradation of viral gRNA by
stalling XRN1 reactivity. This structure alsgenerates sfRNA, which represses two
pathways of viral MRNA degradatidh®°46 Modulation of thehreeway junctionin the
highly organized SiI domairs would decrease the production of SfRNA and may lead to
drugs thattreat infections caused by va®s in the flavivirus family

The HIV RRE RNA, which contains two uniqulereeway junctions is another
important target for small molecul@SThe Rev protein interaction with the structured RRE
is important in the late phase of HIV replication. Bindafidghe triptycene ligand tthree

way junctiors in the RRE region could interfere with the binding of Rev and inhibit the
14



export of full length HIV RNA tahe cytoplasm.To date, there have been no attempts to
target these critical junctions and represent®mpletely new concept for mddtion of

the RRE and HIV RNA.

1.5 Triptycene

Triptycene {; 9,10dihydro-9,10[1,2]benzenoanthracene) is the first and smallest
molecule in an iptycene family, which is a class of aromatic compocmuposed of
arenes fusd to a bicyclo[2,2,2]octane scafféftf® In 1981,the new concept of iptycemse
was proposed by Hart to generaliriptycenerelated small moleculé$ The number of
separated arene unitgse shown as a prefix. For example, triptycer{és have three
separated arenenits, pentiptycenef?) have five separated areusits, and so onHigure
1.9). Due totheunique rigid structural featusef the iptycene family, they have special
electrochemical and photochenligaoperties, making these compounds useful in a wide

range of applications in diverse research at&¥s

Per®
.
1 o ‘Q

Figure 1.9. Structures of triptycenedl) and peatiptycene ).
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1.5.1 Synthesis ofT riptycenes

Triptycene, which has three phenyl rings fused to a bicyclosma#old was first
synthesized and introduced by Barlett andnaokers in 1942They proposed its name
Otriptycened because 0 edsehe siglyahplantiquity, whith s r i 1
was a book with three leaves hinged on a common®&idhe first synthesis of triptycene
by Barlettis shown inSchemel.1.5 The DielsAlder reaction between anthraceBg&nd
1,4-benzoquinone yielded compou#dT he rearrangement 4 with hydrobromic acid and
glacial acetic acidesulted inhydroquinoneb, which was then oxidized to quinofeThe
dioxime 7 was prepared from two hours bkating to refluxin presence o6 and
hydroxylamine hydrochloride in ethanol. The dioximievas then converted into the
diamine8. A deamination reaction @&led to a mixture of monoand dichlorotriptycene
9. Finally, the removal ofthe chlorine group from the ring with potassium hyxicke,
palladium on calcium carbonate, and hydrazine hydiratalcohol was successful to
synthesize triptyceng In 1959 a simple and direct synthetic route was reported by Craig
and Wilcox®® Theyreduced DielsAlder adduct with LiAIH 4 or NaBH: andheatedthe
crude producto reflux inethanolic hydrochloric aci€Chromatography of the products on
acid alumingprovided triptycene in 15% overall yield.

A onestep synthesis dfiptycene from anthracene and benzyne in 28% isolated
yield was achieved by ittig and Ludwig in 1956 Table 1.1, entry 1)%* Inspired from
their work, various benzyne precursors have been used to synthesize triptycene in higher
yield undermild conditiors (Table 1.1). In 1960, Stiles and Miller reported that the

decompositionof benzenediazoniun2-carboxylate leading to benzyne produced
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Schemel.l1. The first synthesis of triptycene by Barlett andvoarkers.

o~ o

0 OH

40% HBr KBr (aq)

OOO Xylene AcOH HO AcOH
reflux, 2 h 90% 93%
™ 7 ‘

3 4 5

NH,OH-HCl 1. SnCly, HCI
EtOH EtOH
78% 2.10% NaOH
86%
6
cl
10% KOH, EtOH
1. ACOH, H,SO, Pd/CaCO3, NH,NH
2. NaNO,,HCI R ‘ ‘
9, R=HorCl 1

triptycene in 30% yieldTable 1.1, entry 2)% Threeyears laterFriedman and Logullo
prepared triptycene from anthracene and anthranilic acid in the presence of taiteyl ni
again via benzyn€Table 1.1, entry 3)% Kitamura and Yamane dramatically increadwss t
yield to 86% by using a new benzyne precursor, (phenftijimethylsilyl)phenyl]
iodonium triflate(Table 1.1, entry 5)%8%9|n addition, Himeshima and coworkers reported
a fluorineinduced benzyn@recursor,o-trimethylsilylphenyl triflate(10) to provide an

efficient and mild generation of benzyne @wganicreactions’?
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Table 1.1. Synthesis of triptycene with various benzyne precurgors

Q)
OOO Benzyne —

‘O

3
entry precursor activation yield (%)
F
1 heat 2864
MgBr
CO,
2 @ heat 3065
N;
COOH | nitrit
amyl nitrite 66
3 @ heat 59
NH,
Br
4 ©/ KOBu-t 2167
(I)Tf
I
5 Ph NBu4F 866869
SiMe3

Schemel.2. A structure ofafluorine-induced benzyne precgor.

@OTf
SiMe3

10
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1.5.2 Applications of Triptycenes

Triptycenes have been extensively studied and useal mumber ofresearch
areas®® In a receh microreview, Jiang and Chen summarized the synthesis and
applications of triptycem and pentiptycene derivatives in six main categonedecular
machines,molecular balances, catatgs materials chemistryGrystal engineeringand
host guest chemistr§® Triptycenederivatives were utilized in molecular gear systems
starting in 19817472 In addition, triptycene derivatives were employed as potential
molecular rotorsin macroscopic compassegyrosopes, molecular digl molecular
brakes, molecular ratchetsid more®*® Pi o n e e r eid thetl970sa knimber of
triptycene derivaties have been used as promising molecular balances to retady
covalent interactions such as CHD, - | and avexe igteraction¥ ! Next,
triptycenebased complexes have been used as catalysts in organic reactionstiech as
palladiumcatalyzel Suzuki coupling?®® Recently, Leung and coworkers synthesized a
triptycenebased monophosphine ligand and used the ligand for palladhtatyzed
SuzukiMiyaura crosscoupling and asymmetric hydrosilylati8hThe tiptycene scaffold
has attracteda greatdeal ofattention from material scientsstlue tothe unusual internal
free volume (IFV)which wadirst introduced and defined by Swager in 26DIEV exists
becausef theinefficient packing of triptycenesyhich preventthem from obtainindully
co-planar molecular orientatisninspired by his work, many triptycene derivatives have
been synthesized and utilized in material chemistry and crystal engin®&tiid.astly,
Chen developed a number of triptycaedexived hosts for potential uses in molecular

recognition and molecular assembf&st?* The synthesis and applications of triptycene
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derived hostsvere summarized i€ h e medesit microreview published in 20° Most
recently, Chen reported triptyendased chiral macrocyclic hostwhich have a helical
chiral cavity at the center of the molecula, enantioselective recognition of chiral guests

containing a trimethylamino group?

Host-guest chemistry

Figure 1.10. Structures of triptycenbaesd chiral macrocyclic hosts for enantioselective
recognition of chiral guests containing a trimethylamino gréfip.

Although triptycems have been used in a variety of applicationdiversefields
of study, biological applications of triptycenes aseldom studied>'?®In 2014, Barros
and Chenoweth first reported the recognitiothefnucleic acid thresvay junction using
triptycenebased molecule’! In their study, triptycenebas@& small molecules
discriminate DNA threavay junctiors (3WJ) fran doublestranded DNA (ds DNA)They
explainedthe keystructuralfeatures othetriptycene scaffolctheededo achieve specific
recognition ofathreeway junction.First, triptycene has ardefold symmetric structure

that matches witthe symmetry of the central helical regiontbE nucleic acid threevay
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junction. In additionthe triptycene scaffold has similar dimensions to the center of the
threeway junction allowing triptycenebasedmoleculeso fit perfectly into the junction
interface(Figure1.11). Thed i s ¢ o n t-sunfacecares ahe triptycene also playan
important rolein minimizing classical intercalative binding modes, which gaiig cause
nonspecific nucleic acid binding. A number of biophysical methods including UV thermal
melting, circular dichroism (CD), gel shift, and fluorescence quencexpgriments were
employedto study the junction recgnition of triptycenebased molades In addition,
Barros and Chenoweth reporti cytotoxicity and cellular uptake of these molecules in
two human ovarian carcinoma cell linf8.They also reported the modulation of a
(CAG)CTG) trinucleotide repeat junction using triptycetr@ased sall molecules in
2015128 These research findings open a door to new applications of triptycenes in

biomolecular recognition.

Figure 1.11. Model of triptycene located at a central binding pocket of a RN threeway
junction

21



1.6 Overview of Dissertation

In this dissertation, we @andedthe previous study of molecular recognition of
nucleic acidhreeway junctions by using triptycer®ased molecules.

In Chapter 2, the synthesis ofs@bgituted tripycene derivativewill be described.
Starting from a commercially available materialai®hraldehyde, we synthesized the 9
substituted triptycene scaffold. The aldehydeéhatC9 position of anthracene wésen
converted to carboxylic acid #e C9 positon of triptycene. This carboxylic acid was
coupled to a betalanine ethyl ester linkesia MsCl activationto extend the length of the
linker. The linker atthe C9 positionof triptyceneenable attachmentto a solid support
such as a polymdround resinAttachment to the resipermitsrapid diversification of
triptycene scaffold by a soligphase synthesisWe synthesized morpodi-, and tri
functionalizedtriptycene derivativewia peptide coupling reactions on the rebmund
triptycene scaffold. Theibding properties othe synthesized triptycene derivatives were
thenevaluatedy usinga (CAG)CTG) trinucleotide repeatynctionas a modesystem

In Chapter 3, wedescrie an improved synthetic route® the 9-substituted
triptycene scaffoldThe numler of stegand the reaction tinsavere reduced, compared to
the previous MsCI activation strategy. In addition, the solubility of the intermediates was
greatly improved to enable a largeale synthesis. The immobilization technique described
in Chapter 2vas also applied to this new triptycene scaffold for sphidse diversification.

A potent lead compound towards a (CAG)CTG) trinucleotide repeat junction was

discovered with Kvalue of 90 nM.
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In Chapter 4, we demonstrate the modulatiommRNA threeway | unrct i
MRNA inE. coli, with triptycene derivativesn this investigation, we used a model system
to study the thermal stabilization thie threeway junctiorsin the presence of triptycenes.
Then, we expanded our investigationinclude in vivo assaysA reporter assay was
designed to monitor the expression level tbé (32 protein in E. coli at different
temperatures in the presence or absence of triptycene derivhtitles presence of lysine
and arginine derivatized triptycendbe fluaescence intensitgecreasedindicating the

suppression or delay tieheat shock responselin coliat high temperature.
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CHAPTER 2 : SYNTHESIS OF 9-SUBSTITUTED TRIPTYCENE
BUILDING BLOCKS FOR SOLID -PHASE DIVERSIFICATION AND
NUCLEIC ACID JUNCTION TARGETING

This work was done in collaboration with SuBgn Suh, and Dr. Stephanie A. Barros.

Adapted with permission from Yoon, |.; Suh;E; Barros,S. A.; Chenoweth, D. MOrg. Lett,

2016 18, 10961099. Copyright 2016 American Chemical Society.
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2.1 Introduction

Nucleic acid junctions play important roles in many biological events. Twage
junctions (3WJs) have diverse architectures and are fiouDA and RNA, where they
often serve as important structural eleméntSeveral small molecules are known to bind
to nucleic acid junctions. However, these molecules often lack specificity, leading to
binding of various structurés. Recently, we rgorted a new class of threeay junction
stabilizers based on the triptycene scaffolthe unique shape andf@d synmetry of
triptycene allows for binding to nucleic acid thweay junctions. We also reported
triptycene derivatives that bind?® o a d(CA

R NH, Solid support anchor

0 — (L -®

R ‘ H,N
L { >R L Z 75N
- Known nucleic acid 3WJ binders - Key building block for immobilization
- Low-throughput diversification - High-throughput diversification

Figure 2.1. Strategy for tptycene solibhase diversification.

Efficient strategies for triptycene diversification are needed to accelerate the
discovery of new nucleic acid jution binders with enhancespecificity and binding
properties. Triptycene building blocks that are arbénao immobilization on a solid
support would allow for rapid diversification and compound library construcEmure
2.1).1911To immobilize triptycene, we designed and synthesizedubstituted derivate
that provides a point of attactent at the bridgehead, maintaining thes@mmetry!213

Although triptycene has been extensively modified for use in materials chemistry
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applications?**® functionalization at the Gposition of triptycene has rarely been
reported®

A carboxylic acid was chosen for functionalization at the C9 tertiary carbon of
triptycene, due to its versatility of conversion into other functional groups, such as
aldehyde, haloalkane, ester, and amide. The carboxylic acid group may atsodved
via decarboxylation at a later stage. More importantly, the carboxylic acid group has been
extensively employed for directed-KC bond functionalization reactions, which could

prove valuable during future ttigcene diversification efforts-2°

N2 - peptide 2N02
: coupling
FGI ; 0 O
—p R | e— OH
red. OZN 02N 7 ‘
aay oI AV B

(in this work)
H_ O OH |©
FGI
S ——
red.
F E

Figure 2.2. Retrosynthesis of key building block A. FGI = functional group interconversion; ox. =
oxidation, red. = reduction, DA = Dieklder reaction.

Our synthetiglan Figure2.2) relies on reduction of the nitro groups on precursor
B to yield building blockA. Further disconnection of the amide bond at the bridgehead
position affords carboxylic aci@.  Aalarfine ethyl ester was coupled to the carboxylic

acidon C. O-Directed nitration was envisioned to regioselectively build three nitro groups
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onto triptyceneD. In addition to nitration, simulteeous oxidation of the alcohol bfto
the desired bridgehead carboxylic acid was anticipated. Next, disconnec@i@mad C10
affords benzyne and anthracdhprecusors, which could be assembled via a Dadider
reaction. PrecursorE was prepared by reduction of aldehyde Earlystage
functionalization of triptycene at C9 would provide an efficient route to &ytepe

building block suitable for soligphase imrobilization and further divercation.

2.2 Results and Discussion

Commercially available anthracefecarbaldehydd was employed as a starting
material. Reduction of using sodium borohydride affordedtaracer9-ylmethanol2 in
96% vyield within1l h (Scheme2.1). Prior to the addition of the Kobayashi benzyne
precursor, the primary alcohol was protected with a MOM group to prevent electrophilic
attack by benzyn&he DielsAlder reaction betwee®and benzyne, which was generated
in situ from 2(trimethylsilyl)phenyltifluoromethanesulfonate andstem fluoride, led to
the efficient formatiorof triptycene4 in high yield.

Treatment o# with nitric acid resultedn nitration of the aromatic rings. During
the nitration reaction, the prexting group on the alcohol was simultaneously deprotected
and oxidized to the carboxylic acid, provididgalong with two other isome&b and6c.

The nitrated triptycene isomepsoved inseparable by silica gel chromatography. Acid
catalyzed esterification of the crude mixture provided ester isof@ecs which were
separated via silica gel chromatography. ®teictures of ester isomefa-c were

confirmed by twedimensional NMRspectroscopy, HMBCand HSQC. Single crystals of
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5a were grown in CHCGICH:CI2/CHsOH, and the structure was determined byaX
crystallography(Scheme2.1). Following separéion of each isomer, saptication was
performed to covert the ester to a carboxylic acid for coupling to an amine linker. Nitration
on theU-carbon was not observed due to its higher elaetyativity compared to that bf

carbon®

Scheme2.1. Approach toward the synthesis af@bstituted trifunctionalized triptycenéal c and
X-ray CrystalStructure oba.

H O CH OMOM
NaBH4 MOMCI, DIPEA
_ % e —_— —_—
THF CHCl;
25°C,1h 0°Cto25°C,2h
1 96% 2 91% 3
R3

80°C,2h

OMe
‘ R 2. H,;S0,4, MeOH ‘ CsF, CH,CN
a O reflux, 24 h O

R% : ‘,TMS
o 1. HNO3, 80 °C, 24 h OoTf
- 3 . OMOM
4

93%

5a,R', R®=NO,; R, R' = H (16%)
5b, R, R* = NO,; R?, R® = H (34%)
5c, R?, R*=NO,; R', R® = H (22%)

1M NaOH (aq)* p-dioxane
60°C, 24 h

6a,R", R’>= NOZ; R%, R'=H
6b,R', R =NO,; R* R*=H
6c, R?, R = NO,; R, R®=H

* Hydrolysis was conducted on each isomer after the separation.
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To investigate the @irecting effect observed during nitration and to further reduce
the number of undesired side products, comp@,edntaining a carboxylic acid at the C9
position, was prepared by deprotectiomdbllowed by KMnOs oxidation (Figure 2.3).
Compoundél, 7, and8 were treated with excess nitric acid at 80 € for 24 h, and the crude
mixtures were analyzed by HPLC using 9diphenylanthrancene as aternal standard.
HPLC anaysis demonstrated that nitration ®fled to fewer side practts compared to
nitration of4 and7 (SeeFigure2.6 ~ Figure2.9 in section2.4 Material and Methodsfor

HPLC chromatogras).

= OMOM o |= OH KWnO,(xs) |/.LOH
T acetone
4 O 25°C,2h 50°C, 3d O

97% 7

HNO,
80°C, 24 h

HNO; HNO;,
80°C, 24 h 80°C, 24 h

overall |

4 16% 72%
7 0.8% 2.4%
8 30% 80%

Figure 2.3. Composition ofal ¢ from the nitration of compoundk 7, and8.

Interestingly, nitration of7 produced little of desired productsba-c. The
composition of6a and 6c¢ significantly changed compared to that from the nitratiod of
and8, and the overall yield increased fbetnitration oB. Attempts were made to increase
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the proportion oba over that of the other isomers. The highest rati6adb 6b achieved
treating nitric acid on triptycengas 0.33%2° The intraduction of a carboxylic acid at the
C9 position of tripycene significantly increased the ratio @d to 6b to 0.81. These
observations are consistent with the carboxylic acid functioning as a dirgaiungduring

the nitration reamon.

Table 2.1. Reaction conitions for amidebond formation at the linker position.

NO, NO;

cl™ o} 0
o H3N/\)I\0Et o /_/’L~0Et
O,N ‘ OH — O,N ‘ N
0 O NO, conditions g Q NO,

6a 9
entry conditions yield (%)?
1 EDC (1.1 equiv), HOB (1.1 equiv), Py (15 equiv), CH,Cl,, 25 °C, 24 h -
2 SOCI, (3.0 equiv), Py (15 equiv), DCE, 25°C, 24 h -
3 (COCI), (2.0 equiv), Py (15 equiv), CH,CI,, 25°C, 24 h -
4 (COCI), (2.0 equiv), Py (15 equiv), DMF, CH,CI,, 25 °C, 24 h -
5 MsClI (2.0 equiv), Py (4.0 equiv), CH,Cl,, 25°C, 1 h 92
6 MsCI (1.2 equiv), Py (2.4 equiv), CH,CL,, 25°C, 1 h 61
7 MsCl (5.0 equiv), Et,N (10 equiv), CH,Cl,, 25°C, 1 h 48

a2 NMR yield. Durene was used as an internal standard.

Isomer6awas chosen for further elaboration due td3#sld symmetry, which is
complementary to that of nucleic acid 3WJs. To extend the length of the linker at the 9
position, several standardaction conditions for amide bond formation were examined.
However, the amidation reaction proved recalcitrand all attempted conditions resulted

in unreacted startingmaterial {Table 2.1, entries 24). The capling of 9
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triptycenecarboxylic acid derivatives with EDC has been previously repSittmvever,
this method was not reproducible ustagas the starting nterial (Table2.1, entry 1). Our
results suggested th#he steically hindered environment around the carboxydwd
prevents coupling of amines under standard conditions, possible due in part to the bulky
active ester intermediates. After a comprehensive literature search, we were inspired by
Ni c ol ae of dnsthanesulfonyl chloride (MsCI) in the total synthesis of the CP
molecules to overcome limitations of a difficult ArAflistert homologation on sterically
encumbered carboxylic acidsTriethylamine and MsCl were added Ga followed by
addition ofb-alanine ethyl est hydrochloride, which was pretreated wviiiethylamine at
0 €. After beingwarmedto room temperatur®wassynthesized in 48% yield &ble2.1,
entry 7). However, complete conversion of gtartingmaterial was not achieved under
these conditions. To drive the reaction to completion, the base was changed to pyridine,
which is less sterically hindered and allows for access to the carboxylic acid near the
bridgehead position. The solvent wakso changed to dichloromethane due to solubility
issues. These changes led to completion ofghetion withinl h after warming to room
temperature and a substantial increase in the yield to 9abte2.1, ently 5). A decrease
in the equralence of MsCI and pyridine deeased the yield to 61% &ble2.1, entry 6).
Among the various amide botidrming reaction conditions tested tiptycene6a, only
the mesylation routafforded the d&ired product in high yield.

Pd/Gcatalyzed hydrogenation & led to reduction of the three nitro groups to
afford triaminotriptycend 0. Next, the free amines were protected with Ergmups by
treatment with Fmochloride and pyridine. Tdlinker ester group was hydrolyzed in the

presence of sulfuric acid and water to produce a4@dThe free carboxylate of fully
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protected building block2 allowed for attachment to-éhlorotriyl chloride resin, which

is compatible with Fmoc deprotectichemistry(Scheme2.2). After attachment to resin,

the Fmoc groups were deprotected using 20% piperidine in dimethylformemgdeerate

the free amines. The correspondingdérprotected amino acid was piivatel with

HATU and N,N-diisopropylethylamine (DIPEA) and added to the deprotected triptycene
on resin.L-Histidine, L:-lysine, andL-asparaginevere selected for attachment to the
triptycene armsThe deprotection and coupling steps were repeated until theedles
sequence of amino acids was achievBdhéme2.3a). Once the desired peptide was
synthesized on solid phase, the triptycene derivatives were cleaved from the resin with

simultaneous deprotection of the amiaaside chain protecting groups by treatment with

Scheme2.2. Synthesis of SPPS precurdd@and loading on 2hlorotrityl chloride resin.

0
o] /__/L
N OFEt H,, Pd/C
e —
‘ H MeCH, 25°C, 2 h
LTI e

Fmoc-Cl, Py
NHFmoc CH,Cl,

0°Cto25°C

” 16 h
/_/[L OR 83% (two steps)
N

DIPEA FmocHI\I

2-chlrorotrityl- NHFmoc
chloride resin Q
CH,Cl,/DMF so
i H2S04
overnight 1, R=Et :I H,Ofdioxane (1:2)
12,R=H 80°C, 6 h
NHFmoc quantitative

O
[ Ao ¢
N
FmocHN ‘ NHEmoc cl O

13
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a cleavage solution (9:1:1 trifluoroacetic acid (TFA)/2@ifuoroethanol
(TFE)/dichloromethane). Asparagine, which was coupled at therrhinus, required
longer cleavage times due to the slow deprotection rate of the trityl group close to the amino
group (Scheme2.30b).222° Each compound was purified by preparative revepebe

HPLC and analyzed by analytiddPLC and MALDFMS.

Scheme2.3. (a) Solidphase peptide synthesis ef@bstituted triptycene onéhlorotrityl chloride
resin. (b) Cleavage from the resin to generate triptycene derivaivés.

a) NHFmoc

o 1) piperidine/DMF (20% viv), 1 h

2) Fmoc-His(trt)-OH, DIPEA
0 /__)LO—@ HATU, DMF, overnight
N iperidi B
FmocHN H 3) piperidine/DMF (20% viv), 1 h
O NHFmoc
NH-His(trt)-NH2

13

[0}
0
1) Fmoc-Lys(boc)-OH, DIPEA O N/—-ﬁ)Lo_@

H_ATL.J, .DM F, overnight HaN-(trt)His-HN H
2) piperidine/DMF (20% viv), 1 h 0 O NH-His(trt)-NHz2

14

NH-His(trt)-Lys(boc)-NH2

1) Fmoc-Asn(trt)-OH, DIPEA
O HATU, DMF, overnight

O—@ 2) piperidine/DMF (20% v/v), 1 h

HaN-(boc)Lys-(trt)His-HN

L 7 O NH-His(trt)-Lys(boc)-NH2

15
NH-His(trt)-Lys(boc)-Asn(trt)-NH2

16
R
(0]
/_/ll_ o /_)LOH
TFA/TFE/DCM R ‘ H
(9:1:1) U R
30 min, twice O

14, R = NH-His(trt)-NH, 17, R = NH-His-NH;
15, R = NH-His(trt)-Lys(boc)-NH, 18, R = NH-His-Lys-NH,
16, R = NH-His(trt)-Lys(boc)-Asn(trt)-NH, 19, R = NH-His-Lys-Asn-NH;"

"Deprotection required 12 h for triptyceh® CT = 2chlorotrityl chloride resin.
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TNR* TNR*-110 TNR*-Trip

lowaBlIk & Eam  lowaBlk lowaBlk

®-A@=G
®-C@®-T

Figure 2.4. Graphical representation ofeliluorescencguenching 3WJ assay.

Table 2.2. Dissociation constants of triptycentg 20. Note: Synthesis of triptycer lacking a
bridgehead substituent has been previously repdrted.

compound K, (LM)
17, Trip-(His), 8.38 + 1.358
18, Trip-(His-Lys), 0.269 + 0.055
19, Trip-(His-Lys-Asn), 0.460 + 0.092
20, Trip-(His).* 1.76 £ 0.215

Triptycenes 17-19 wer e evaluated for binding t C
trinucleotide repeat junction using a previously developed fluoresecpreaehing
experimenf. The binding of triptycene47-19 were compared to a previously reported
triptycene thatbinds to the junctionThe preiously reported junction binder2Q) is
analogous td.7 but lacks the linker atthe@o s i t i on. A d(CAG) A(CTG)
was labeled with a fluorophore (FAM) and a quencher (lowaBIk). This labelednd/J
preincubated with a 10 bp inhibitqf10) strand that is complementary to the junction.
Hybridization of the inhibitor strand to the junction results in an open form, leading to an
increase in fluorescendg€igure 2.4). Triptycenesl7-20 were addedo the préencubated
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fluorescent form. Binding of the triptycenes leanlslisplacement of 110 and refoation

of the 3WJ, resulting in a decrease in fluorescence.Kuhealue for triptycenel7 was
determined to be 8.38 €M and exhibited a s
triptycene 20 (ie., Kival ue of 1. 76 1&aid 19, contaimng di-yoc e n e s
tripeptides substients, exhibited enhanced bindiaifinity toward the juncttn compared

to that of20with Kavaluesof0.2a nd 0. 46 ¢ MTable2®)s Thepresence efl y (
lysine appears to play an impant role in binding to the jution andwill be investigated

in future studies

2.3 Conclusions

In summary, we have developed a synthetic approactpreparing new 9
substitutedriptycene building blocks. Thegpproach enables solghase diversification of
triptycene. During the synthesis, @irected nitration was observed frothe MOM
protected primary alcohoHM), primary alcohol 7), and carboxylic acidg) at the C9
position of triptycene. Thesesults indicated that the carlytie group increased thatio
of nitration onb-carbons toward the linker position, pointing tpassible carboxylic acid
directing effect. In addition, a kegmide bond formation was achieved on a sterically
hinderedand geometrically fixed tertiary carboxylic acid using a MsCl activation strategy.
This tactic may be regarded as a genestahtegy toward functionalization of extremely
stericallyencumbered tertiary carboxylic acids. For diversificatiothef new triptycene
building block, three amino acids warglized including histidine, lysineggnd asparagine

to producetrisubstituted triptycened7-19. The binding ability of thesynthesized
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triptycene @rivatives towardd ( C A G) Ar{nil€oBde repeat junction was evaluated,
and triptycened8and19 exhibited better inding affinity to the junctiocompared to that
of a previously reported triptycene with livtker (20). This new synthetic strategy provides
rapid and efficient access to triptycene building blocks, enabling Higloughput
diversification for rapid evaluation of potentipinction binders and other medicinal

chemistry targets.

2.4 Material and Methods

Generalinformation

All  commercial reagents and sohts were used as received.- 9
anthracenecarboxaldehyde, sodium borohydrid@-diisopropylethylamine(DIPEA),
chloromethyl methyl ether, be#sdanine ethyl ester hydrochloride, Fmoc chloride,
palladium on activated carbon, cesium fluoride, -(trBnethylsilyi)phenyl
trifluoromethanesulfonate, and nitric acitfom Aldrich, IX[bis(dimethylamino)
methylene]l1H-1,2,3triazolo[4,5b]pyridinium3-oxide  hexafluorophosphate(HATU)
from Oakwood Products, Inc.;¢hlorotrityl chloride resin from Advanced ChemTech,
chloroform-d, methylene chloridel2, dimethylsulfoxided6, and acetord6 from
Cambridge Isotope Laboratories Inc. wenarchased. HPL@urified TNR DNA 3WJ
oligo modi f i-FeAM wai nt dil oaw a Boboa(EAM)-GCBGAGCAG

CCCTTGGGCAGCACCTTGGTGCTGCTCCGQowaBIk)-3 6 ) and DNA i

nhi

k

( 5GCTGCTCCGE3 6) were purchased from I ntegrateod
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FIl ash column chromatography was perform
pore diameter). Thinlayeahromatography was performed on Sorbent Teclyieosilica
plates (250 &m t hinadgnetie esodance $pectldtl (NMR) andic | e ar
Carbon nuclear magnetic resonané€ NMR) spectra wereecorded on a Bruker DMX
500. Highresolution mass spectrometry analysis was obtained by Dr. RakeslattbRli
University of Pennsyl vaniads Mass -T®pectr on
mass spectrometefmodel LCTXE Premier) using electrospray ionization. High
performance liquid chromatography (HPLQhromatograms were recorded and
triptycenes 17-19 was purified on JASCO HPLC (Easton, MD) equipped wdth
Phenomenx (Torrance, CA) column (Analytica
em SpmepCl&BE2) 100A; 250 x 10.0Q00 Mm% 5 & m)
CRCO:H) and organic (CBCN) phasesMatrix-assisted laser desorption ionization
(MALDI) massspectra were recorded on a Bruker Ultraflex Il MALDDFTOF mass
spectrometer ( Bi | lcgancid-bydroxycinvamic acid s (CHQA). U
Fluorescenceneasurements were obtained on a Tecan M1000 plate reader (Mannedorf,

Switzerland).

Experimental pocedures

H__O OH
NaBH,
THF
25°C, 1h
1 2

96%

43



anthracen-9-ylmethanol (2). To 4.9 g (23.76 mmol) of anthracefearbaldehydel) in

THF (50 mL) wasadded 1.35g (35.64 mmol) of NaBH he mixture was stirred for 1 h at

25 €. The mixture was poured into watef00 mL) resulting in a yellow precipitate. The

yellow solid was filtered off, washed thoroughly with water, dneld. (4.7 g, 96 % isolated

yield)2°

IH NMR (500 MHz,CDC}) U 8.46 (s, 1H), 8.40 (d, 2H,

Hz), 7.597.53 (m, 2H)7.527.46 (m, 2H), 5.65 (s, 2H).

OH 0]

MOMCI, DIPEA
CH,Cl,
0°Ct025°C, 2 h
2 91% 3

9-((methoxymethoxy)methyl)anthracene (3) To 354 mg (1.7 mmol) of anthrac@n
ylmethanol(2) in CH2Cl2 wasadded 1.76 mL (10.2 mmol) &f,N-diisopropylethylamine

at 0 €. After stirring for 30 min, 0.4 mL (5.1 mmol) afhloromethylmethyl ether was
added to this solution at O €. The mixture was stirred for 10 min, warmed to 2&n@,
stirred for 18 hSaturated NECI (aq) solution was added to the reaction. The organic layer
was extractedrom the solution, dried with anhydrous sodium sulfate, concentrated in
vacuo, and purified by columchromatography using ethyl acetate/hexanes (4%) as the
eluent togive 391 mg of3 (391 mg, 91 % isolated yield).

Physical Property. Pale yellow solid, m.p. = 881 C.

TLC: Rf = 0.52 (silica gel, 25% ethyl acetate/hexanes).

44



IHNMR (500 MHz,CDC}) & 8.53 (d, 2H, J = 8.8 Hz),
Hz), 7.687.62 (m, 2H)7.587.51 (m, 2H), 5.67 (s, 2H), 4.90 (s, 2H), 3.61 (s, 3H).

13C NMR (125 MHz,CDC$) & 131.6, 131.3, 129.2, 128.
95.7, 61.1, 55.8.

IR (neat) 1733, 1446, 1265, 1147, 1093, 1061, 1029, 934, 914, 891, 731, DO&y64

HRMS (ESI) calculated for GHieNaCG:" [M+Na]* 275.1043, found 275.1055.

TMS
owon [F
OTf O\/O
- N
OO0 w9

80°C, 2 h
3 93% 4

9-((methoxymethoxy)methyl}9,10-dihydro-9,10[1,2]benzenoanthracene (4) To a

vial was added 384 m@.52 mmol) of3, 907 mg (3.04 mmol) of-Rrimethylsilyl)phenyl
trifluoromethanesulfonate, 693 mg (4.56 mmol)asF, and 2.5 mL of acetonitrile at 25

€. The solution was heated to 80 € and stirred for 2 h under Argon Afisr the reaction

was completed, Saturated ME (aq) solution and Byl acetate were added to the reaction
mixture. The organic layer was extracted from the solution, dried with anhydrous sodium
sulfate, concentrated wmacuo, and washed with hexanes. The crude mixture was then
purified by column chromatography usidighloromethane (100%) as the eluent to give
(464 mg, 93 % isolated yield).

Physical Property. Pale yellow solid, m.p. = 19%798 €.

TLC: Rf = 0.39 (silica gel, 25% ethyl acetate/hexanes).
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IH NMR (500 MHz, CDC}) Ui -776 (8,BH), 7.1&.09 (m, 6H), 5.52 (s, 1H), 5.27 (s,

2H), 5.22 (s, 2H), 3.80 (8H).

3CNMR (125 MHz,CDC}) U 146. 7, 144. 8, 125. 3, 125.

54.5, 53.2.
IR (neat): 1375, 1337, 1265, 1183, 1035, 951, 945, 824,636 634 cm.

HRMS (ESI) calculated for &H20NaQ:" [M+Na]* 351.1356, found 351.1356.

1. HNO3, 80 °C, 24 h

O O\/O 2. H2804, MeOH
0 O N\ reflux, 24 h
4

5a, R', R®= NO,; R?, R*=H

5b,R', R*=NO,; R?, R®=H

5c, R2, R*= NO,; R", R®=H
methyl trinitro -9,10[1,2]benzenoanthracene€d(10H)-carboxylate (5a5c). To a round
bottom flask was adde®l97 g (12.1 mmol) of and 50 mL of concentrated nitric acid at
25 €. The solution was heated to 80 € arstirred for 24 h. After the reaction was
complete, water was added to the solution. The solution was neutnaltheld-COs and
re-acidified with 1M HCI. Ethyl acetate waslded to the solution and the organic layer
wasextracted from the solution. The combined organic solution was dried with anhydrous
sodium sulfate, andoncentrated in vacuo. To the crude mixture was added 40 mg of

H2SOQw and 100 mL of anhydrous methanol.€Holution was stirred under reflux for 24 h.

After the reaction was completed, the solution was cooled, extradtedthyl acetate,
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dried with anhydrous sodium sulfate, and then concentrated in vacuo. The crude mixture
of 5a-5cwas then purified usingptlumn chromatography. The composition of each isomer

was determined by HPL@nalysis.

5a

methyl 2,7,15trinitro -9,10[1,2]benzenoanthracene(10H)-carboxylate (5a)

Physical Property. White solid, m.p. = 28283€C.

TLC: Rf = 0.41 (silica gel, 50% ethyl acetate/hexanes).

IHNMR (500MHz,CDC}) & 8.64 (d, 3H, J = 2.1 Hz), 8
(d, 3H, J = 8.2 Hz), 5.7(&, 1H), 4.43 (s, 3H).

I3CNMR (125MHz,CDCY) U . 167. 9, 148. 9, 120084 61.4338,143. 1
53.6.

IR (neat): 2924, 1746, 1522, 1455, 1340, 1301, 1274, 1250, 1214, 1166, 1025,903 cm

HRMS (ESI) calculated for €H14N30s" [M+H] ", no peak matched the calculated exact

mass. Hydrolysis of thester to carboxylic aciflawas requied to obtain the HRMS. See

HRMS data on aciéa
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methyl (9s,10r)}2,6,15trinitro -9,10[1,2]benzenoanthraceneé(10H)-carboxylate

(5b):

Physical Property. White Solid, m.p. = 16364¢C.

TLC: Rf=0.73 (silica gel, 50% ethyl acetate/hexanes).

IH NMR (500 MHz,CDC$) & 8.63 (d, 2H, J = 2.0 Hz), 8
2H, J = 8.1, 2.0 Hz), 7.9@d, 1H, J = 8.5, 2.0 Hz), 7.89 (d, 1H , J = 8.5 Hz), 7.70 (d, 2H,

J = 8.1 Hz), B9 (s, 1H), 4.40 (s, 3H).

13C NMR (125 MHz, CDC}) ua 168. 1, 149. 6, 147. 9, 146 . 2
122.9,122.1, 120.1, 11941.6, 53.5, 53.4.

IR (neat): 2924, 1743, 1519, 1455, 1341, 1297, 1214, 1165, 1071, 1024, 892 cm

HRMS (ESI) calculagd for G2H14N30s" [M+H] ", no peak matched the calculated exact

mass. Hydrolysis of thester to carboxylic acifib was required to obtain the HRMS. See

HRMS data on aciéb.




methyl (9r,10s)2,6,14trinitro -9,10[1,2]benznoanthracene9(10H)-carboxylate

(5¢):.

Physical Property. White Solid, m.p. = 16162 C.

TLC: Rf=0.81 (silica gel, 50% ethyl acetate/hexanes).

IH NMR (500 MHz,CDC#)ti 8.65 (d, 1H, J = 2.2 Hz), 8.:
1H, J = 8.2, 2.2 Hz), 8.08ld, 2H, J = 8.6, 2.3 Hz), 7.93 (d, 2H, J = 8.6 Hz), 7.67 (d, 1H, J

= 8.2 Hz), 5.80 (s, 1H), 4.37 (s, 3H).

13C NMR (125 MHz, CDCH) i 168 . 1, 149 . &21, 1447 142.3,125.3,6 . 2 4,
124.9, 122.9, 122.1,20.3, 119.3, 61.9, 53.4, 53.3.

IR (neat): 2924, 1744, 1598, 1458, 1438, 1342, 1254, 1165, 1023 cm

HRMS (ESI) calculated for €H14N30s" [M+H] ", no peak matched the calculated exact

mass. Hydrolysis of thester to carboxylic aciic was required to obtain the HRMS. See

HRMS data on aciéc.

R4
O O
1M NaOH (aq)

O2N OMe -
U Q R p-dioxane
60°C, 24 h
R2
5a, R', R®= NO,; R2 R*=H 6a, R', R®=NO,; R?, R*=H
5b, R", R*= NO,; R% R®=H 6b, R", R*=NOy; R% R®=H
5¢, R2, R*= NO,; R, R®=H 6¢c, R?, R*=NO,; R, R®=H

General procedure for preparation of trinitro -9,10[1,2]benzenoanthracene(10H)

carboxylic acid (6a6c).To 1 eq of5a (or 5b, 5¢) dissolved inp-dioxane was added 3 eq
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of 1M NaOH (aq) and heated to 60 € for 24 After the reaction was completed, the
solution was neutralized and acidified with 1N HCI. Ethyl acetate was &oltleelsolution

and the organic layer was extracted from sbition. The combined organic layer was
washedwith NH4Cl (aq) and brine. The organic layer was dried with anhydrous sodium

sulfate, and concentrated in vadoaive6a (or 6b, 6¢) in quantitative yield.

NO,

[,
T e

6a

O,N

2,7,15trinitr 0-9,10[1,2]benzenoanthracene(10H)-carboxylic acid (6a)
Physical Property. Pale yellow solid, m.p. = 35859 C.

TLC: Rf=0.43 (silica gel, 100% ethyl acetate).

IH NMR (500 MHz, (CB).CO) U 9.23 (s, 3H), 7.96 (dd,
8.1 Hz), 6.21 (s, 1H).

13C NMR (125 MHz, (CR):.CO) & 171.3, 151.3, 147.5,
53.4.

IR (neat): 2924, 1592, 1518, 1341, 1262, 1092, 1069, 1023, 963 cm

HRMS (ES) calculated for @H10N3Os [M-H] 432.0473, found 432.0457.
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(9s,10r)2,6,15trinitro -9,10[1,2]benzenoanthracene(10H)-carboxylic acid (6b}

Physical Property. Pale yellow solid, m.p. = 26866 C.

TLC: Rf = 0.23 (siica gel, 100% ethyl acetate).

IH NMR (500 MHz, (CR).CO)ii 9.29 (d, 2H, J = 2.2 Hz), 8
(d, 1H, J = 2.2 Hz), 8.0(dd, 2H, J = 8.1, 2.2 Hz), 7.88 (d, 1H, J = 8.1 Hz), 7.81 (d, 2H, J

= 8.1 Hz), 6.28 (s, 1H).

13C NMR (125 MHz, (CR):CO)&i 171.2, 152.5, 151.,1273,146. 8,
124.6, 121.8,121.421.1, 118.6, 63.7, 53.1.

IR (neat): 2921, 1737, 1593, 1524, 1462, 1377, 1344, 1260, 1093 cm

HRMS (ESI) calculated fo€21H10N3Os [M-H] 432.0473, found 432.@2.

(9r,10s)2,6,14trinitro -9,10[1,2]benzenoanthracene(10H)-carboxylic acid (6c)
Physical Property. White solid, m.p. = 20203¢C.

TLC: Rf=0.03 (silica gel, 100% ethyl acetate).
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IH NMR (500 MHz, (CR):.CO)ii 8. 92 (s, 1H), 8.49 (s-
8.06 (M, 3H), 7.95 (dH, 8.2 Hz), 6.47 (s, 1H).

13C NMR (125 MHz, (CR)2.CO)ii 168 . 6, 151 . 1,6145174182.92125.8]
125.53, 122.51, 121.120.1, 119.5, 61.8, 52.5.

IR (neat): 2927, 1720, 1598, 1518, 1458, 1418, 1341, 1260, 1179, 1090, 902 cm

HRMS (ESI) calculated fo€21H10N3Os [M-H] 432.0473, found32.0466.

¥ ¥

e ‘

97%

9,10[1,2]benzenoanthracem(10H)}ylmethanol (7). To a vial was added 1.95 g (5.94

mmol) of4, 70 mL of 1IMHCI, and 100 mL of THF. The solution was stirred at 25 €.

After 1 h, ethyl acetate was added to the solution.ofganic layer was extracted frahe
solution, dried with anhydrous sodium sulfate, and concentrated in vagieto (1.68
g, 99 % isolated yield).

Physical Property. Pale yellow solicf*

TLC: Rf=0.31 (silica gel, 25% ethyl acetate/hexanes).

IH NMR (500 MHz, (CD)2CO)li  7-7.48 fm, 6H), 7.046.97 (m, 6H), 5.58 (s, 1H), 5.30
(d, 2H, J = 3.6 Hz), 4.6Q, 1H, J = 3.6 Hz).

13C NMR (125 MHz, (CD).CO)ti 147 .2, 145.6, 124.71,

54.0.
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IR (neat): 3308, 2962, 2918, 1579, 1458, 1261, 1071, 19,740, 648, 629, 611, 481
cmt.

HRMS (ESI) calculated for £&iH170" [M+H]* 285.1274, found 285.1288.

O OH KMnOy (xs O

@)
) ‘ OH
CFLS 5m &F 0

9,10[1,2]benzenoanthracene®(10H)-carboxylic acid (8y To a vial, 31.9 mg (0.11
mmol) of 7 was dissolved iacetoneand heated to 50 €. 88.6 mg (0.56 mmol) of KMnO
was added to the solution. Whenever the solutioned to black or brown, an additional
88.6 mg (0.56 mmol) of KMn©was added to the solution. After 3 dagsedium sulfite
solution (aq) was added to theude mixture and then extracted with ethyl acetate. The
combinedorganic layer was dried with anhydrous sodium sulfate, and concentrated in
vacuo to yield (22.4 mg, 67 %solated yield).

Physical Property. Pale yellow solid?

TLC: Rf = 0.28 (silica gel100% ethyl acetate).

IH NMR (500 MHz, (CDB).CO) Ul  8-8.00 9m, 3H), 7.467.42 (m, 3H), 7.086.97 (m,

6H), 5.57 (s, 1H)

13C NMR (125 MHz, (CR).CO)ti 172.3, 146.4, 144.6, 125.
54.2.

IR (neat): 2925, 1712, 1458, 1448, 1386, 1261, 1213, 1171, 1085, 1032, 867, 801, 748,

735, 7(8, 685, 645, 624509, 478 cri.
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HRMS (ESI) calculated for €H1302" [M-H]™ 297.0921, found 297.0914.

NO, NO,

1. MsCl, Py o)
0 CH,Cl,, 0 °C O /\)LOEt
_ N
02N ‘ OH 2. Cl 0 O,N ‘ H
NO, N NO
Q H /\)J\OEt 0 O 2

3N

6a
ethyl 3-(2,7,15trinitro -9,10dihydro-9,10{1,2]benzenoanthracene-carboxamido)-
propanoate (9) To around bottom flals was added 213.2 mg (0.49 mmol)eaf 97.3 mg
(1.23 mmol) of pyridine, and 10 mL of G&l2. 140.9 mg (1.23 mmol) of MsCl was added
to the solution at 0 €. After 30 minutes, 188.9 mg (1.23 mmol) of {addaineethyl ester
hydrochloride and 97.3 mg (1.23mol) of pyridine in 10 mL of CkCl2 was added to the
solution and warmed to 25 €. After 1 h, the solution was dried in vacuo and triturated with
ethyl acetate severames to gived (240 mg, 91 % isolated yield).
Physical Property. White solid, m.p. =304-305¢C.

TLC: Rf = 0.23 (silica gel, 50% ethyl acetate/hexanes).

IH NMR (500 MHz, (CD)2:CO)i 8. 92 (d, 3 H8.12]bs,2H),B.OR(ddHz ) ,

3H, J = 8.2, 2.2 Hz), 7.9@, 3H, J = 8.2 Hz), 6.40 (s, 1H), 4.19 (g, 2H, J = 7.2 Hz),-4.14

4.08 (M, 2H), 2.99t, 2H, J = 6.6 Hz), 1.25 (t, 3H,5)7.2 Hz).

13C NMR (125 MHz, (CD).CO)i 171.3, 166.6, 150.5, 146.

60.2, 60.0, 53.1, 35.83.6, 13.6.
IR (neat): 3301, 2924, 1722, 1668, 1521, 1342, 1261, 1203, 1031, 800 cm

HRMS (ESI) calculated for @H20NsNaOy* [M+Na]* 555.1122, found 555.1127.
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R

NO,
o o)
o /\/LOE‘( o) /‘)L
. N Hp, PAIC N
2 MeOH, 25°C,2h R H
S el

9
Fmoc-Cl, Py, CH,ClI,, I: 10, R = NH,
OOCt025OC,16h 11,R:NHFm0C

ethyl 3-(2,7,15tris((((9H -fluoren-9-yl)methoxy)carbonyl)amino)-9,10-dihydro-9,10

OEt

[1,2]benzenoanthraceneé-carboxamido)propanoate (11) To a vial was charged80

mg (0.338 mmol) 09, 3.6 mg (0.034 mmol) d?d/C, 2 mL of MeOH under Hyas. After

24 h stirring at 25 €, the solution was filtered and concentrated in vecyield crude of

10. To around flask was add&@, 0.27 mL (3.38 mmol) of pyridine, and 8L of CH:Cl-.
Thesolution was cooled and stirred for 30 minutes at 0 €. 612.1 mg (2.37 mmol) oF-Fmoc
Clin 3 mL of CHCl2 wasadded to the solution. The crude mixture was warmed to 25 €
and stirred for 16 h. The solution was washed satfurated NkLCI (aq), dried, and purified

by column chromatography using ethyl acetate (100%) as the elugimetbl (310 mg,

83 % isolated yield).

Physical Property. White solid, m.p. = 15258.3¢C.

TLC: Rf=0.81 (silica gel, 50% ethyl acetate/hexanes).

'HNMR (500 MHz,CDRCl2) 4 7.98 (s, 3H), 7.78 (d, 6H,
Hz), 7.39 (t, 6H, J = 7.Hz), 7.327.20 (m, 12H), 7.15 (s, 3H), 6.75 (bs, 1H), 5.28 (s, 1H),
4.40 (d, 6H, ¥ 6.7 Hz), 4.19 (t, 3H, J = 6.7 H®,06 (q, 2H, J = 7.1 Hz), 3.89 (g, 2H, J =

5.7 Hz), 2.80 (t, 2H, J = 5.7 Hz), 1.11 (t, 3H, J = 7.1 H2).
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13C NMR (125 MHz, CDRCl2) a 173.1, 168. 8, 153. 4, 144.
127.7,127.0, 125.0, 123.619.9, 115.9, 66.7, 60.9, 60.5, 52.4, 47.1, 35.8, 34.1, 13.9.

IR (neat): 1715, 1604, 1526, 1464, 1450, 1409, 1322, 1297, 1260, 1213, 1155, 1055, 985,
804, 758, 737, 70821, 531, 501 crh

HRMS (ESI) calculated for @HseNaNaOs" [M+Na]™ 1131.3940, found 11133949.

NHFmoc NHFmoc
o] O
0 o) /\)g
FmocHN ‘ H H,O/dioxane (1:2) FmocHN ‘ H
U O NHFmoc 80°C. 6 h U O NHFmoc
11 quantitative 12

3-(2,7,15tris((((9H -fluoren-9-yl)methoxy)carbonyl)amino)-9,10-dihydro-9,10
[1,2]benzenoanthracene-carboxamido)propanoic acid (12) To a vial was charged
30.0 mg (0.027 mmol) of 11, 0.1 mL o&&s, 4 mL of 1,4dioxane, and 2 mL of water.
The solution was stirred at 80 €. After 24 h, the solution was concentrateaturo and
purified by column chromatography using ethyl acetate (100%) as the eluent 1@ give
guantitativeyield.

Physical Property. White sold, m.p. = 188189 €.

TLC: Rf=0.67 (silica gel, 100% ethyl acetate).

'H NMR (500 MHz, (CR):S O)  1+9.58 (b8} 3H), 8.1:7.94 (bs, 4H), 7.87 (d, 6H, J =
7.5 Hz), 7.71 (d, 6H, J 5 Hz), 7.39 (t, 6H, J = 7.5 Hz), 7.30 (t, 6H, J = 7.5 Hz),-7.28
7.07 (m, 6H), 5.36 (s, 1H), 4.39 (d, 6H, J = 6.8 M5 (t, 3H, J = 6.8 Hz), 3.7868 (m,

2H), 278-2.62 (m, 2H).
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IR (neat): 3324, 2924, 1719, 1604, 1536, 1464, 1299, 1216, 1052, 985 cm

HRMS (ESI) calculated for €6Hs1N4Oy [M-H] 1079.3662, found 1079.3630.

17, R = His-NH,
18, R = His-Lys-NH,
19, R = His-Lys-Asp-NH,

General procedure for preparation of 1719 (SolidPhasePeptide Synthesis) To a
SPPS reaction vesselas added 1 eq of-&hlorotrityl chloride resin (10200 mesh,
substitution: 1.4 mmol/g). The resin was stirrediim CHCI2 for 30 min and the solvent
was removed by vacuum. 1.2 eq 1 dissolved indimethyformamide:CHCI2 (1:5
volume ratio) and 5 eq df,N-diisopropylethylamine (DIPEA) were added to tlsin.

After stirring for 10 min, an additional 1.5 eq of DIPEA was added to the resin and stirred
overnight (12h) at 25 €. HPLC grade methanol was addsat stirred for 20 min to cap

the remaining reactive functiongdoup on the resin. The solution was removed by vacuum
and the resin was washed wiECl2 (1 min, 3 timesphnd dimethylformamide (1 min, 3
times). 20 % (v/v) piperidine in dimethylformamideas added to the resstjrred for 1 h,

and then the solution was drained. The resin was washed with dimethylformamide (1 min,
3 times),CH2Cl2 (1 min, 3 times) and dimethylformamide (1 min, 3 times). 9.5 eq of
corresponding Fmaeprotected aminacid (Fma-His(trt)-OH, FmoeLys(boc)}OH, or

FmocAsn(trt}OH) was preactivated with 9 eq of HATU and 18qg of DIPEA in
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dimethylformamide. The practivated solution was then added to the reaction vessel and
stirredfor ~12 h overnight. The solution was removedrdguum and the resin was washed
with dimethylformamidg1 min, 3 times)CH2Cl2 (1 min, 3 times) and dimethylformamide

(2 min, 3 times). 20 % (v/v) piperidine dimethylformamide was added to the resin, stirred
for 1 h, and then the solution was drainEke process oivashing the resin and the amino
acid coupling was repeated until the desired sequence of peptide was adMegrdhe
peptide coupling is completed, the resin was washed with dimethylformamide (1 min, 4
times),CH2Cl2 (1 min, 4 times). Ta desired product was cleaved from the resin by treating
a mixture of trifluoroacetic acid(TFAR,2,2trifluoroethanol(TFE), andCH2Cl2 (9:1:1
volume ratio) for 30 min twice. For compourd®, cleavage took 1h. The cleavage
solution was then collected@ooncentrated in vacuo. The crude mixture was dissolved in
MilliQ water and purified by revergghase HPLC. Purified productd719) were

anayzed by MALDIMS and analyticateversephase HPLC for the purity.

HPLC analysis of compound 5&c

After the ntration reaction o4, 7, and8 with nitric acid for 24 h at 80 €, the crude
mixture was cooledjeutralized with KCOs, and reacidified with 1M HCI. Ethyl acetate
was added to the solution and the orgdaier was extracted from the solution. The
combned organic solution was dried with anhydrous sodium sulat concentrated in
vacuo. Crude mixtures were dissolved in acetonitrile. For quantitative analysis, 9,10
diphenylanthracene (internal standard) dissolved in acetonitrile was added to the crude
mixture. All samples werthen analyzed by reverpidase HPLC. Solvent gradient method

used is showm Figure2.5.
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Figure 2.5. Solvent gradient method for HPLC dysis of 5a-5c. A: 0.1 % CECO.H in
water, B: Methanol
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Figure 2.8. Chromatogram of crude nitration mixture from compo@nd
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HPLC analysis of compound 12 and 110

The purified samples were dissolved in acetonitrile (for compa@ndr in MilliQ
water (br compoundd 7-19) and then analyzed by reveiglease HPLC to confirm the
purity of samples. Two different gdients were used as shownFHigure 2.10. (left:

compoundl?2, right: compound 17-19).
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Figure 2.10. Solvent gradient method for HPLC analysis of (I&&) and (right)17-19. A: 0.1 %
CRCO;H in MilliQ water, B: Acetonitrile
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Fluorescencequenching experiment

Fluorescencguenching experiments were conducted in 50 mM sodium phosphate
buffer, pH 7.2. Inhibitorl( 1 0 ) strand binding curves were
i ncreasing concentrati ons-TNRf3WJl Safples werel 9 ¢ L
incubated for 2 hours and ran in triplicate. Inhibitor strand displacement curves with
tripycenes were obtained by inaub i ng 14 e L-TOR 3®W0 wMt RQ1 ¢L

eM 110 for 2 hours a room temperature. To t
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of triptycene was added and incubated for 2 hours. Fluoresence measurements were
conducted in a 384ell plate and were recorded with an excitation at 495 nm and emission

at 520 nm using 5 nm bandwidths.

1.0m 1.0-
osd T ¢ ° 0.84
0.6+ 0.6+
2 E
@ 0.4 0.4+
0.2+ 0.2+
(J
0.0 T T o 0.0 T T ——
10710 108 106 104 10710 108 106 104
Concentration (M) Concentration (M)
1.0-
0.8+
) 0.6‘ )
T i
0.4+
0.2+ I
OC T ] 1 e 1 OC e
10°10 108 106 104 10'-10 16—8 15-6 15'4
Concentration (M) Concentration (M)

Figure 2.15. Fluorescencguenching assay for triptycengg(A), 18 (B), 19(C), and20" (D).
“Triptycene20is ananalogue of triptycen#7 lacking a linker at the C9 positidn.
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2.7 Spectra and Supplemental Information
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Figure 2.16. *H NMR spectrum of in CDCk (500 MHz)
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Figure 2.17. *H NMR spectrum o8 in CDCk (500 MHz)
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Figure 2.29. *H NMR spectrum obcin CDCk (500 MHz).
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MALDI -MS analysis
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Figure 251 MALDI-MS data of compoundl2. Calculated for GHs:NsNaG" [M+Na]*

1103.363, found 1103.873.54E15:KN4Os" [M+K] * 1119.337, dund 1119.863.; gH51NsNaxOg"
[M-H+2NaJ] 1125.345, found 1125.873.
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Figure 2.52. MALDI -MS data of compound?. Calculated for GH4N130s" [M+H]* 826.353,

found 826.690.; BHiNiNaOs* [M+Na]* 848.335, fand 848.679.; @HsN1NaOs™ [M-
H+2NaJ' 870.317, found 870.670.
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Figure 2.53. MALDI -MS data of compound8. Calculated for HsoN16Os" [M+H]* 1210.638,

found 1211.290.; &H7oN1oNaQy" [M+Na]* 1232.620, dund 1233.284.; £&H7sN1aNaxOy" [M-
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Figure 2.54. MALDI -MS data of compountl9. Calculated for @HggN25015" [M+H] ™ 1552.767,

found 1553.231.; ﬁH97N25Na015+ [M+Na]+ 1574.219, found 1575.218.;7@496N25N32015+ [M-
H+2Na] 1596.731, found 1597.206.
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Table 2.3. Crystal data and structure refinement3or

Empirical formula
Formula weight
Temperature/K
Crystal system

Space group

o T o

O O C«

Volume

z

Jcalc

>

F(000)

Crystal size, mm

2d range for
Index ranges

Reflections collected
Independent reflections
Data/restraints/parameters
Goodnesof-fit on F?

Fi nal R indexes

Final R indexes [all daja
Largest diff. peak/hole

Ca7H29N6O16Clo
1252.81

100

triclinic

PT

9.6450(4)A
11.5310(5)A
23.1800(9)A
92.059(2)°
90.249(2)°
95.534(2)°
2564.25(18)A
2

1.623 g/cm
0.569 mmt
1268.0

0.28 x0.14 x0.03

dat a3.55-50.764°
11 O h3kOd,13,

81802
9384[R(int) = 0.0693]
9384/0/706
1.036

[ Ri=0.0553, wR=0.1464
R1=0.0644, wR= 0.1568
1.25£1.10 eA3

0
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CHAPTER 3 : BRIDGEHEAD -SUBSTITUTED TRIPTYCENES FOR
DISCOVERY OF NUCLEIC ACID JUNCTION BINDERS

This work was done in collaboration with SuBgn Suh, and Dr. Stephanie Aaigos.

Adapted with permission from Barros, S. A.; Yoon, |.; SURES.Chenoweth, D. MOrg. Lett,

2016 18, 24232426 Copyright 2016 American Chemical Society.

110



3.1 Introduction

Nucleic acid junctions arémportant structural intermediates in biojot’
Junctions are present in important biological processes including replitatiirese
junctions also occur in viral genomes in addition to trinucleotide repeat expansions
associated with numerous neurodegenerative disas@bese structures aadso present
in nanostructures and aptanitersed sensofs® ' The ability to selectively modulate a
subset of nucleic acid structures using small molecules would allow for the chemical
control of cellular processes as well as the reprogramming of ceduémts’ '’ The
ability to differentially stabilize predefinadlcleic acidstructures or to reprogram and bias
the equilibrium distributiorof an ensemble of structures in a precise manner could have a
profound impact not only in biology but also incheic acidnanotechnology and materials

applications.

Ve
NHFmoc
FmocHN OL CO,H
C 4 O NHFmoc
Key Amino Acid
\ Building Block for SPPS Y,

Figure 3.1. Schematic of triptycene bound to a thieay junctionand a key triptycene building
block for diversification by soligphasesynthesis.

We previously demonstrated that triptyceln@sed moleculesan bind to thregvay
junctions (3WJs¥® Additionally, we have shown that these molecules bind to

d ( CAG) Ar¢pE€ats@plicated in triplet repeat expansion dise¥SEse ability to
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synthesize libraries of triptycene derivatives on seligports will accelerate efforts to
identify biologically relevanhucleic acid junction binders and provide hat insight into
the molecular recognition properties of triptycenes tovdardrse junctiorsequences and
topologies. To facilitate solighasammobilization, a point of attachment on triptycene is
required. The bridgehead position provided a strategiation,as it is equidistant from
the three amino groups that servesdss ofdiversification (Figure 3.1). We recently
described a synthesis for bridgehesadbstituted triptycene building blockHere, we
report a modified, more efficient synthesis by utilizing a combidedk coupling/benzyne
Diels-Alder strategy. The new triptycene building block was furttieersified on solid
phase with short diand tripeptides, anthe final compounds were evaluated lbamding
toad ( CAG) Adp&fjudgtion. We discovered new hiffinity leadcompounds for

this junction motif that will form the basis @frther investigations.

= itration = Nitration
g DA
amidation
o/ CO,Et
_\N02
this work previous work improvement
steps 4 7 -3
time (h) 37 120 -83
yield (%) 42 38 +4

Figure 3.2. Improvement of the synthesis of triptysxintermediates in this work.

Similar to our previous route, our synthetic plan relied orr¢dection of nitrated

triptycene, a key intermediate, to instdlé three key amine functional groups that serve
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as points offuture diversification Figure 3.2). The synthetic strategy presented here
provides a shorter synthesis with only feteps to the key intermediate compared to seven
steps in our previous route. Additionally, this method significantly reduceldréatetion

times from 120 to 37 h and showed an improvement in oweedd|(Figure3.2). Moreover,

the solubility of intermediates was improved. After extending the linker at the bridgehead
via an amidation reach in the previous route, the resulting prodshbwed poor to
moderatesolubility in most organic solvents. However, the intermediigtéisis synthetic
route have good solubility, allowing easwraracterization and largeale reactions. In
addition,a newregioisomeilsc that has all three nitro groups facing away fribr linker

was isolated in this new synthetic route, whereagégmisomer was not observed in the

previous report.

3.2 Results and Discussion

We initiated our synthesis with a Heaaction between-Bromoanthraceng and
methyl acrylate in the presence phlladium(ll) acetate, to-tolylphosphine, and
triethylamine ina sealed tubelhe Heck reaction proceeded cleanly and resulted in the
desired produc® in 84% yield Gcheme3.1). Next, olefin2 was reduced under mild
conditions usingpalladium(ll) acetateas the catalyst and potassium formatettses
hydrogen source, producing in 85% yield* The key Diels-Alder reaction with
anthracene 3 and benzyne, generatedn situ from 2-(trimethylsilyl)phenyl
trifluoromethanesulfonatand cesium fluoride, proceeded smoothly to yield bridgehead

substitutedriptycene4 in 95% vyield. Nitration of triptyceneesulted in hydrolysis of the
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bridgehead esteand four majonitrated regioisomers that proved inseparable by standard
chromatographic techniques. Esterification of the cmedetion greatly facilitated the
separation of the regioisomerimixture (Gad) using standard silica gel column
chromatograpy. The nitratedriptycene regioisomers were characteribgdHMBC and
HSQC See Figure 3.19 ~ Figure 3.33 in section 3.7 Spectra and Supplemental
Information ). A crystal of triptycene5d was obtained in chloroform to confirm its

structure by Xray crystallography $chemes.1).

Scheme3.1. Synthesis ofbridgeheaesubstitutedriptyceness a 1 d

CO,CH;
Z CO,CH; = HCO 4K, Pd(OAc);
_—
OOO Pd(OAc),. EtsN DMF, 60 °C
P(o-Tol)s, DMF 85%
110 °C
84% 2
CO,CH3
OTf COZCHs 1. HNOg, 75°C
CsF, MeCN 2. H,S0,, MeOH
80°C
95% 4

5a,R', R4 Ré=H; RZ RS, R5 =NO, (19%)
5b, RZ, R3 R®=H; R!, R4 R®=NO, (22%)
5¢, R', R4, R%=H; R2 R3 R® = NO, (6%)

5d, RZ R3 R8=H; R, R% R5=NO; (15%)
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Scheme3.2. Synthesis obrthogonally protected building blodkand its solidphase synthesis.

NO, NH,

1. Fmoc-Cl, pyridine,
Pd/C, H, DCM

CO2CH3 — > COzCH3
O2N ‘ MeoH  Ha2N ‘ 2. Hy0, HyS04
LI H—No, 97% LI H—NH,

dioxane
80%

5d 6

FmocHN

NHFmoc
NHFmoc ‘
2-chlorotrityl (0] O
chloride resin r
DIPEA, CH,Cl,/DMF ® O O D

FmocHN OL COH cl
U O NHFmoc O FmocHN
7

H,N-(Boc)Lys-Gly—NH

1. piperidine (20% v/v), DMF HN-ClY-Lys(Boc)-NH,
2. Fmoc-Gly-OH. HATU, DIEA, DMF Q
3. piperidine (20% v/v), DMF O Q O

4. Fmoc-Lys(boc)-OH, HATU, DIEA, DMF () O o r

5. piperidine (20% v/v), DMF D

Cl
SR
Gly-Lys(Boc)-NH,

HoN-Lys-Gly

TFA/TFE/DCM
(9:1:1)

NH
O CO,H
H
HoN-Lys-Gly~N ‘ N
LI Y " Gly-Lys-NH,

8

Next, isomeibd was utilized in subsequent transformatitimast wee described in
the previous publicatioff. Pd/Gcatalyzedhydrogenation, Fmoc protection, and acid
catalyzedhydrolysis of the ester were performed to yield protettigtycene acid7 in
78% vyield over three steps. A key buildibfpck 7 wasimmobilized on 2chlorotrityl
chloride resin in preparation for solphase diversificatiofScheme3.2). After addition of

triptycene and washing of the resin, the Frgmups on triptycene were deprotected using
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piperidine n DMF (20% v/v) for 1 h. A decreased reaction time ledirtcomplete
deprotection of all three Fmoc groups. Afteprotection, the first amino acid was coupled
onto theimmobilized triptycene using HATU and DIEA. Overnigbbuplings were
required for comiete reaction with all threlbindered aniline nitrogens. Next, subsequent
deprotectiondollowed by coupling of the desired amino acids were contirurgid the
final sequence was obtained. The final deprotectiagheodmino acid side chain protecting
groups and cleavage fronresin were performed simultaneously using 9:1:1
TFA/TFE/DCM. The resulting triptycene peptides were purifieddwersed phase HPLC
and characterized prior to evaluatiortlod junction binding properties. In this manuscript,
we focued our efforts on mong di-, and tripeptides to maximize diversityhile
maintaining minimal molecular weight. Longer peptidesn certainly be produced
although cell permeability will be @nsideration as the size increases.

Binding of the amino acid sstituted triptycenes wasvaluated against a slipped
out d ( CAG) Aefedt Giicleicacid junction. Lysine and histidine containing
triptycenes wersynthesized due to thdarge presence in nucleic agioteininterfacial
interactions. Among the moleles previously tested[ripNL-(Lys)s and TripNL-(His)3
exhibited the highest affinitytoward thgunction. Several dimeric and trimeric amino acid
substituents were synthesized for compari€cheme3.3). A high-throughputassay in
which the 3WJ was labeled withfluorophore and a quencher was used to determine
binding. The addition of a 10 bp oligonucleotide strand that @asplementary to theNy
end of the junctionl{0) opened thestructure, resulting in a highly fluorescent state
(TNR*-110), asshown inFigure 3.3. Titration of junctionstabilizing moleculesesulted

in quenching of fluorescence duedisplacement of the inhibitor strand and reformation
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Scheme3.3. Structures of triptyenpeptides.

Previous work
H,N-Asn-Lys-His

COZH
R! R

U N ‘
HoN-Asn-Lys-His
2 y U “His-Lys-Asn-NH,

TripNL-(Lys)3, R' = -NH-Lys-NH,
TripNL-(His)3, R" = -NH-His-NH,

TripAM-(His-Lys-Asn) 4

This work R?

8, R? = -NH-Gly-Lys-NH,
9, R? = -NH-Gly-His-NH,
10, R? = -NH-His-Lys-His-NH,
11, R? = -NH-His-Lys-Lys-NH
12, R? = -NH-His-Lys-Asn-NH,

triptycene derivatives K, (UM)
TNR*-I110 TNR*-Trip TripNL-(Lys), 0.47 + 0.04
TripNL-(His), 213+0.22
TripAM-(His-Lys-Asn),  0.46 £ 0.09

Trip .
- 8  Trip-(Gly-Lys), 0.09 £ 0.01
"—
9 Trip-(Gly-His), 3.81£0.59
10 Trip-(His-Lys-His), 0.20 £ 0.03
e . .
-(His-Lys- +

EaM lowaBlk Q*_% lowaBlk 11 Trip-(His-Lys-Lys), 0.17 £0.03
12 Trip-(His-Lys-f‘-\sn)3 0.39 + 0.06

Figure 3.3. Fluorescene-quenching rperiment oftriptycene peptides
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of the junction TNR*-Trip ). To determine if increased flexibility of the amino acdy

play an important role in binding, glycine was couptiectly to the triptycene core

followed by lysine or histidinelrip-(Gly-Lys)s (8) exhibited increased potency compared

to that of Trip(Lys)s, with a Kq of 90 nM, indicating that thencreased flexibility may

allow for better binding. Thigdriptycene derivative demonstrates the highest binding

affinity toward the NR junction thus far. Interestingly, Tr{@ly-His)s (9) did not exhibit

improved binding compared to that ®fip-(His)s. Triptycenes substituted with three

amino acidsvere also synthesized using lysine, histidine, and aspardgipgHis-Lys-

His)s (10), Trip-(His-Lys-Lys)s (11), and Trip(His-Lys-Asn) (12), which only differ in

their final amino acidexhibited kiv al ues of 0. 20, 0.17, and (
should be noted that most triptycene derivatives synthesizleis work showed imprcad

binding affinity compared to th@ost potent triptycene derivative from the previous work,

which exhibitedakval ue of 0. 27 ¢ M. bindlag atiiditysad Trigc o mp ar e
(His-Lys-Asn) (12) to that of TripAM(His-Lys-Asn), which have the same pete

sequence but aammide linker at the bridgehead. They exhibited similar bindifigities

toward the junction. Triptycen@&12were alsaharacterized using a gel shift assay, where

the inhibitor strandvas incubated witlunlabeled 3WJdee sectior8.4 Material and

Methods for experimental detai)sThis change resdted in an electrophoretic shift that is
consistent with a larger complex. Titration of triptycene witls complex resulted in
reformation of thenucleic acidjunction (Figure 3.12 in section 3.4 Material and

Methods).
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3.3 Conclusions

In summary, we have developed a shorter, more effisigrthetic strategy toward
a bridgeheadubstituted triptycene building block. This new synthetic route is improved
in termsof solubility, enabling largscale reactions. Moreover, this roygmvides an
interesting new regioisomer that was not obsetkieolugh the previous routé. building
block with anattachment point at the bridgehead provided rapid accessimariptycene
peptide derivatives using solghase synthesimethods. The triptycene peptides were
evaluated for nucleiecid junction binding to a triplet repeat expansoligonucleotide
using a fluoresceneleased assay, which revealed the nposent binder to this junction to
date. New triptycene buildinglocks that are amenable to sefidase diversification
provide gpath for the discovery of new junction binderghwsuperiomproperties. This new
class of bridgeheaslubstituted triptycenanay allow for the generation ofoffiee a di o n e
compoundcombinatorial libraries for the rapid discovery of new junctidmders using
fluorescently labeled junctioris T Adéditionally, this new class of bridgeheatbstituted
triptycenes opens ttaoor for the creation of putlown probes to identify cellulaargets

in future studies.

3.4 Material and Methods

General information
All commercial reagents and solvents were used @sved. Sbromoanthracene,
potassium formate, nitric acid, Fmoc chloride, pyridine, and acetonitrile were purchased

from SigmaAldrich (St. Louis, MO). Methyl acrylate, triethylamine §H), tri-o-
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tolylphosphine,palladium(ll) acetate, cesium fluoride, aRdl/C were purchased from
Acros OrganicsMethanol, dichloromethane (DCM), dimethylformamide (DMF) were
purchased from Fish&cientific (Waltham, MA). (4Bis(dimethylamino)methylenelH-
1,2,3triazolo[4,5b]pyridinium3-oxide hexafluorophosphate) (HATU) as purchased
from Oakwood Productdnc. (West Colombia, SC),-éhlorotrityl chloride resin was
purchased from AdvancedhemTech (Louisville, KY), diisopropylethylamine (DIEA),
trifluoroacetic acid (TFA), an@,2,2trifluoroethanol (TFE) were purchased ritoAlfa
Aesar (Ward Hill, MA), and piperidinevas purchased from American Bioanalytical
(Natick, MA). Chloroformd, methancld4, dimethylsulfoxidedé were purchased from
Cambridge Isotope Laboratories (Tewksbury, MM)in-layer chromatography was done
using Sorbent Technologies (Norcross, GA) silica plaje8 50 em t hi ckness
chromatography was performed on a Teledyne Isco (Lincoln QdE)biFlash Rsystem
using RediSep filica columns.

TNR DNA 3 \BLCGGAGGAGCCCTTGGGCAGCACCTTGGTGC
TGCTCCGG3 0 ) and DNA G€CHGCHACGE3r6 ) 1 Ove(r =ofrgmur c has
Integrated DNATechnologies (IDT). HPL&urified TNR DNA 3WJ oligo modified with
a -BAM a n-tbwaBlacR was purchased from IDT.

'H and®*C NMR were recorded on a Bruker UNI 500 NMR at 500 and 125 MHz,
respectively. High resolution mass spegtsae obtained at the University of Pennsylvania
Mass Spectrometry Center on a Waters -TOF mass spectrometer (model L&E
Premier) usingelectrospray ionization in positive or negative mode, depending on the
analyte. Highperformanckquid chromatographywas performed on a JASCO HPLC

(Easton, MD) equippedi t h a Phenomenx (Torrance, CA)
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C18(2) 100A; 250 x 4.60 mm,if5mSemipr ep: 5¢e&¢ C18(2) 100A;
using aqueous @ + 0.1% CBCOzH) and organic (CkCN) phasesMatrix-assisted laser
desorption ionization (MALDI) mass spectveere obtained on a Bruker Ultraflex Il
MALDI -TOF-TOF mass spectrometer (Billerica, MA)s i rcypnedhydroxycinnamic
acid (CHCA). Fluorescence measurements were collectadl@can M100 plate reader

(Mannedorf, Switzerland).

Experimental procedures

CO,CH;
Br
Z>C0,CH;4 Z
OOO Pd(OAc),, EtsN
P(o-Tol)3, DMF
1 110 °C

84% 2
methyl-3-(anthracen-9-yl)acrylate (2)*>4": A solution of 3bromoanthracen¢l) (192
mg, 0.74@nmol), methyl acrylate (642 mg, 7.46 mmol);NE(755 mg, 7.8 mmol), trio-
tolylphosphing(25 mg, 0.082 mmol), and Pd(OAdB.37 mg, 0.0373 mmol) in DMF (7
mL) was heated at 12T in a sealed tube for 5 h. Upon cooling, the mixture was filtered
through Celite and wash&dth ethyl acetate. The filtrate was extied with ethyl acetate
and water several timeSombined organic layers were then dried ovesSTa. The crude
mixture was purified bgolumn chromatography on silica gel (5% EtOAc/hexanes) to give
1 (164 mg, 84%).
IH NMR (500 MHz, CDC#) i 8. 6 5 =(16.3 Hz)18#45 (s,dH), 8.2523 (m, 2H),

8.038.01 (m,2H), 7.537.48 (m, 4H), 6.45 (dlH, J = 16.3 Hz), 3.93 (s, 3H)
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13C NMR (125 MHz, CDC}) 167.0, 142.4, 131.4, 129.5, 129.4, 129.0, 128.4, 126.9,
126.5, 125.5,25.3, 52.1.
IR (neat) 3051,2949,1719, 1635, 1435, 1265, 1170, 988, 886, @133.

HRMS (ESI) m/z calculated for @H1502" [M+H]" 263.1067 found263.1074.

CO,CHj4 CO,CH3

Z HCO,K, Pd(OAC),

DMF, 60 °C
85%

2 3

methyl 3-(anthracen-9-yl)propanoate (3/°*": To a solution o (102 mg, 0.389 mmol)

in DMF (5 mL) was added potassium formate (654 mg, 7.78 mmol) and Pd{Q/d)

mg, 0.02 mmoland stirred at 60 € for 4 h. After cooling, the mixture was filtered through
Celite and washedith ethyl acetate. The filtrate was extracted with ethyl acetate and
water. The combined organilayer was washed with water and brine, then dried over
NaSQ:.. The crude mixture was purifiday column chromatography on silica gel (5%
EtOAc/hexanes) to yield (87.3 mg, 85%).

IH NMR (500 MHz, CDC})&i 8. 38 (s, 1HB.S8 0.8HzZR®02(dd,aH,J 2 H,
=8.4,0.5Hz), 7.567.53 (m, 2H), 7.57.46 (m, 2H), 4.068.96 (M, 2H)3.75 (s, 3H), 2.82

2.79 (m, 2H).

13C NMR (125 MHz, CDC}) a 173. 6, 132. 4, 131. 7, 129.
124.0,52.0, 35.2, 23.4.

IR (neat) 3053, B50, 1734, 1436, 1174, 885, 762,

HRMS (ESI) m/z calculated foiC1sH1702" [M+H]* 265.1223found 265.1226.
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CO,CHs s O
@OTf ‘ CO,CH;
UL " owmen ~ 22D

80 °C
3 95% 4

methyl 3-(9,10[1,2]benzenoanthracerd(10H)-yl)propanoate (4. To a solution of3
(443mg, 1.68 mmalin acetonitrile (2.8 mL) was added CsF (764 mg, 5.03 mmol) and 2
(trimethylsilyl)pheny! trifluoromethanesulfonate (1.0 g, 3.35 mmol) and stirred at 80 €
for 4 h. Upon cooling, saturated NBI solution was added to the mixture and then
extracted withdichloromethane. The combined organic layer was washed with brine and
dried over NaSQs. The crude mixture was purified by column chromatography on silica
gel (510%EtOAc/hexanes) to yield (542 mg, 95%).

IH NMR (500 MHz, CDC}) ti  7-7.30 (m, 6H)7.046.95 (m, 6H), 5.34 (s, 1H), 3.85 (s,
3H), 3.363.31 (M, 2H), 3.213.15 (M, 2H).

13C NMR (125 MHz, CDCY) 4 174 . 7, 147. 0, 1,586,23,4,522 5. 1,
30.7, 22.7.

IR (neat) 2952, 1733, 1450, 1176, 62811,

HRMS (ESI) m/z calculated foiCz4aH20NaQ;" [M+Na]* 363.1356found 363.1369.
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R1

R2
CO,CH

O CO,CH5 1. HNOj, 75 °C R? ‘ o
‘ - 7 R

L 7 72 2. H,S0,, MeOH RO &,
R3

4

5a, R', R* R® = H; R, R® R%=NO,
5b, R? R% R°=H; R', R* R®=NO,
5¢, R', R* R®=H; R? R3 R®=NO,
5d, R?, R% R®=H;R" R* R°=NO,

19%)
22%)
6%)

15%)

~ o~~~

—

methyl 3-(trinitro -9,10[1,2]benzenoanthracerd(10H)yl)propanoate (5a5d): A
solution of4 (424.5 mg, 1.25 mmol) in concentrated HN@5 mL) was stirred at 75 C
overnight. Thesolution was cooled to room temperature, neutralized, and extracted with
EtOAc. The organitayers were combined, washed with brine, and dried ove8®aThe
crude mixture was thereesterified by stirring in methanol (50 mL) with catalytigSids
under eflux overnight. Thesolution was concentrated under vacuum. Water was added
and then basified by the addition M NaOH. The water was extracted with EtOAc
immediately. The organic layer was washketh brine and dried over N&Qs. The crude
mixture waspurified by column chromatograplon silica gel (30% EtOAc/hexanes) to

give 5a(110 mg, 19%)5b (130 mg, 22%)5c (37.2 mg,6.3%), andcbd (88.3 mg, 15%).

O,N O

O,N ‘ CO,CHj3
AN

5a NO,

Physical Property. m.p. = 143146 C.
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IH NMR (500 MHz, CDCH)i 8. 32 (d, 2 Hs, 1H),8.61(dd,38,)H&3, ,

2.2 Hz), 7.69 (d, 1H, J = 8.1 Hz), 7.62 (d, 2H, J = 8.4 Hz), 5.81H%,3.91 (s, 3H), 3.52
(t, 2H, J = 7.Hz), 3.17 (t, 2H, J = 7.4 Hz).

13C NMR (125 MHz, CDC}) 1@3.4, 151.3, 150.2, B£2, 146.1, 145.8, 145.0, 125.2,
123.6, 122.5, 122.1, 119.4, 118.3, 548,3, 52.7, 30.2, 22.0.

IR (neat) 2953, 1734, 1523, 1344, 1201, 738,

HRMS (ESI) m/z calculated fo C24H1sNsNaGs* [M+Na]* 498.0908, found98.0919

NO,
OL CO,CHs
CHLLywo:

O,N
5b

Physical Property. m.p. = 139142C.
'H NMR (500 MHz, CDC%) U -827 (8,2H), 8.04.97 (m, 3H), 7.69 (d, 2H, J = 8.1
Hz), 7.64 (d, 1H, J &4 Hz), 5.88 (s, 1H), 3.92 (s, 3H), 3.56 (t, 2H, J =Hz}, 3.20 (t,

2H, J = 7.3 Hz).

13C NMR (125 MHz, CDC}) it 17 3. 4, 150. 9, 150. 5, 146.

123.6, 122.4, 122.11,19.4, 118.154.6, 53.4, 52.7, 30.2, 21.8.
IR (neat) 3091, 2953, 2848, 1733, 1520, 1342, 1ZBHcm™.

HRMS (ESI) m/z calculated fo C24H1sNsNaGs* [M+Na]* 498.0908found 498.0919.
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O,N

‘ CO,CHs
on Iy

5¢c NO,
IHNMR (500MHz,CDCk) & 8.32 (d, 3H, J = 2.26Hz), 8
(d, 3H, J = 8.4 Hz), 5.79 (s, 1H), 3.92 (s, 3H), 3.48 (t, 2H, J = 7.6 Hz), 3.13 (t, 2H, J = 7.6
Hz).
I3C NMR (125 MHz,CDCH)ii 173 . 4, 149. 9, 146. 7, 531646 . 4,
52.7, 30.5, 22.6.

HRMS (ESI) m/z calculated fo C24H16N3Os [M-H] 474.0943found 474.0931.

NO,
O,N OL CO,CH3
Z 7 O NO,
5d
Physical Property. m.p. = 147150C.
'HNMR (500 MHz,CDC}HUG 8. 31 (d, 3H, J = 1.7 *38), 8.0

(d, 3H, J= 8.1Hz), 5.78 (s, 1H), 3.96 (s, 3H), 3.57 (t, 2H, J = 7.3 Hz), 3.20 (t, 2H , J = 7.3
Hz).

13C NMR (125 MHz, CDCY) i 17 3. 4, 150. 5, 146. 4, 125. 2,
30.3,21.8

IR (neat) 3093, 2954, 2851, 1736, 1525, 1453, 13452, 1076, 903, 828n™.

HRMS (ESI) m/z calculated fo C24H1sNsNaQs" [M+Na]* 498.0908found 498.0910.
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N02 NH2

O Pd/C, H, O
CO,CHy —————™= CO,CH3

02N ‘Q NO, Mgeﬁ: HZN ‘Q NH,

5d 6
methyl 3-(2,7,15triamino-9,10[1,2]benzenoanthracerd(10H)-yl)propanoate (6} To
asolution of5d (259 mg, 0.544 mol) in methanol was added Pd/C (25 mg). The solution
waspurged with a K gas balloon and kept undes glas for 1 h. The mixture was filtered
throughCelite and washed with methanol. The filtrate was concentrated and purified by
columnchromatography onlga gel (5% MeOH/DCM) to givé (204 mg, 97%).
'HNMR (500 MHz,MeOD)Yi 7. 01 ( d, 3 H, J = 7.7 Hz),
3H,J=7.7, 1.5 Hz), 4.98, 1H), 385 (s, 3H), 3.18.13 (m, 4H).
13C NMR (125 MHz,Me OD) 0 176. 5241, 104,182, 54.2,63R3, 52.5,
31.4, 23.8.
IR (neat) 3354, 2951, 1724, 1605, 1473, 132681, 58Zm™.

HRMS (ESI) m/z calculated fo C24H24N302" [M+H] * 386.1863, foud 386.1848.

NH, NHFmoc
O 1. Fmoc-Cl, pyridine, O
DCM
H,N ‘ COLHs o ~  FmocHN /] COzH
o 2T 71 NHFm
0 O NH, dioxane U O oc
80%
6 7

3-(2,7,15tris((((9H -fluoren-9-yl)methoxy)carbonyl)amino)-9,10[1,2]benzenoankra-

cen9(10H)ylhpropanoic acid (7) To a solution 06 (116 mg, 0.301 mmol) in DCM (2.5
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mL) wasadded excess pyridine. The solution was cooled to 0 €, then added Fmoc chloride

in DCM (2.5mL) slowly. The solutia was allowed to warm to room temperature over

time and stirrecbvernight. The mixture was extracted with DCM and acidic water. The
organic layer was washeaslith brine and dried over MgSOThe crude mixture was

purified by column chromatograploy silicagel (30% EtOAc/hexanes). A solution of the

ester (209 mg, 0.199 mmol) in dioxanen(®), H-O (5 mL), and catalytic $$O: was

stirred at 80 € overnight. The reaction mixture waesutralized and concentrated under
vacuum. Water was added to the mixture wad extractedvith DCM. The organic layer

was washed with brine and dried over.8&:. The crude mixturgvas purified by column
chromatography on silica gel (50% EtOAc/hexanes) to yi€¢lk65 mg,80%).

Physical Property. Pale yellow solid, m.p. $69-171 C.

IH NMR (500 MHz,DMSOd 6) &4 12.44 (bs, 1H), 9.58 (s,
7.72 (d, 6H, J = 7.0 Hz), 7.50 (s, 3H), 7.40 (t, 6H, J = 7.4 Hz); 7.&6(m, 9H), 7.14 (bs,

3H),5.37 (s, 1H), 4.44 (d, 6H, J = 6.7 Hz), 4.28 (t, 3H,6817 Hz), 3.12.92 (m, 4H).

13C NMR (125 MHz,DMSO-d6) a 174. 2, 153. 4, 143. 7, 141.
125.1, 123.2,120.1,14.4, 113.5, 65.5, 52.2, 50.9, 46.6, 29.2, 22.2

IR (neat) 3375, 3325, 3075, 2950, 1709, 160528, 1450, 1212, 738n™.

HRMS (ESI) m/z calculated fo CeoHs2N30s" [M+H] " 1038.3749found 1038.3737

Solid Phase Synthesis
All triptycenes were synthesized orcBlorotrityl chloride resin (10@00 mesh, 1.5nmol
substitution/g). The resin was added to a dry glass reaction vessel and swollen by stirring

in dichloromethane (DCM) for 30 min. After swelling, the DCM was removed by vacuum
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and FmocTrip-OH (8d) was coupled to the resin. Fmddp-OH (1.5 equiv) in 1:5
DMF:DCM andDIPEA (5 equiv) were added and stirred for 5 minPBA (1.5 equiv)

was added and ¢hresin wastirred overnight. The solution was then drained by vacuum
and the resin was washed thoroughith DMF, then DCM, then DMF. The beads were
deprotected by treatment with 20% piperidime DMF for 1 h with stirring. The
deprotection solution wagmoved by vacuum and the resras washed thoroughly with
DMF, DCM, then DMF. The first Fmeprotected amino acid waken activated with
HATU (9 equiv) in the presence of BEA (18 equiv) prior to addition to theeaction
vessel and allowed to couple emmight. Subsequent deprotections and amino acid
couplings were run as described above. Before cleavage from the resin, the terminal Fmoc
wasremoved. The beads were thoroughly washed with DMF then DCM. Peptides were
cleaved byaddition of trifluoroaceti@acid (TFA), 2,2,Zrifluoroethanol (TFE), and DCM
(9:1:1). Thecleavage solution was collected by vacuum and concentrated using a rotary
evaporator. Therude residue was diluted in 1:1 (0.1% TFA@HMeCN), purified by

reversephase HPLC, andnalyzed by M\LDI-MS.

129



[—CH-09 [254.0 nm]

1200000

1000000

g g
g s

Intensity [pAU]

400000

200000

-200000

10.0 12.0 14.0 16.0 18.0
Retention Time [min]

4,55¢+005 7.37e+005 1.02e+006
]

£
&
=

=3
£
-

©

2

B

=

10.0 12.0 14.0 16.0 18.0
Retention Time [min}

Figure 3.4. Crude HPLC chromatogranf triptycene8 after cleavage from-2hlorotrityl chloride
resin
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Figure 3.5. Crude HPLC chromatogram offitycene9 after cleavage from-2hlorotrityl chloride
resin
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Figure 3.6. HPLC chromatogram of purified triptyceBe
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Figure 3.7. HPLC chromatogram of pified triptycene9.
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Figure 3.8. HPLC chromatogram of purified triptycei@.
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Figure 3.9. HPLC chromatogram of purified triptyceid.
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