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Brief Communications

Dynamics of the Rapsyn Scaffolding Protein at the
Neuromuscular Junction of Live Mice

Emile G. Bruneau!? and Mohammed Akaaboune!-

Department of Molecular, Cellular, and Developmental Biology and 2Program in Neuroscience, University of Michigan, Ann Arbor, Michigan 48109

The efficacy of synaptic transmission depends on the maintenance of a high density of neurotransmitter receptors and their associated
scaffold proteins in the postsynaptic membrane. While the dynamics of receptors has been extensively studied, the dynamics of the
intracellular scaffold proteins that make up the postsynaptic density are largely unknown in vivo. Here, we focused on the dynamics of
rapsyn, a protein required for the clustering and maintenance of acetylcholine receptor (AChR) density at postsynaptic sites. Using
time-lapse imaging, we demonstrated that rapsyn is remarkably dynamic compared to AChRs at functional synapses, turning over 4 -6
times more rapidly than AChRs. In addition we found that the rapid turnover of rapsyn is insensitive to alterations in synaptic activity,
whereas AChR turnover is profoundly affected, illustrating that rapsyn and receptor dynamics are controlled by distinct mechanisms.
These data indicate that individual postsynaptic components are in permanent exchange despite the overall stability of synaptic struc-

ture, which may play a role in synaptic plasticity.

Introduction

The presence of a high density of acetylcholine receptors (AChRs) in
the postsynaptic membrane is the hallmark of the neuromuscular
junction (NMJ). The accumulation of receptors at synaptic sites is a
multistep process controlled by factors ranging from synaptic activ-
ity to postsynaptic proteins (Sanes and Lichtman, 2001). In mice
lacking the postsynaptic proteins MusK, rapsyn, Dok7, or LRP4,
receptor clusters fail to form (Gautam et al., 1995; DeChiara et al.,
1996; Okada et al., 2006; Kim et al., 2008; Zhang et al., 2008), and in
mice deficient in dystrophin glycoprotein components, the mainte-
nance or stabilization of AChR clusters is compromised (Adams et
al., 2000; Grady et al., 2000).

The dynamic movement of receptors between synaptic, non-
synaptic, and internal compartments is the basis of synaptic plas-
ticity. At the mature neuromuscular synapse AChR density is
maintained by a dynamic equilibrium of removal, insertion, re-
cycling, and lateral migration mechanisms, all of which appear to
be regulated by activity (Akaaboune et al., 1999, 2002; Bruneau et
al., 2005). However, the molecular dynamics of individual com-
ponents that make up the postsynaptic density remain unknown.
Also unknown is the extent to which these dynamics may help
control synaptic size, density, and stability, and whether this dy-
namism is modulated by alterations in synaptic activity.

Because rapsyn has been shown to bind directly to AChRs
(Burden et al., 1983; LaRochelle and Froehner, 1986) and because
ofits role in maintaining a normal and stable number and density
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of AChRs at the postsynaptic membrane, we sought to investigate
how rapsyn is maintained and regulated in vivo. By electroporating
rapsyn-GFP into individual muscle fibers and using time-lapse
imaging, we show that rapsyn is highly dynamic compared to
receptors that occupy the same synapse. Further, in contrast to
AChRs, rapsyn insertion appears to be unaffected by alterations
in synaptic activity.

Materials and Methods

Rapsyn construct. The original rapsyn-GFP construct, driven by a CMV
promoter, was given as a kind gift by Dr. Jonathan Cohen (Harvard
University, Cambridge, MA).

Electroporation. Adult male mice (20-27 g NSA, Harlan Sprague
Dawley) were anesthetized with an intraperitoneal injection of ketamine
and xylazine (87 and 13 mg, respectively, per kg body weight). The ster-
nomastoid muscle was surgically exposed and 7 ul of rapsyn-GFP (2
mg/ml) was layered over the muscle surface. Gold electrodes were placed
parallel to the muscle fibers on either side of the muscle, and eight mo-
nopolar square-wave pulses were applied perpendicular to the long axis
of the muscle. Following electroporation the mouse was sutured and
allowed to recover in a heated recovery chamber.

Live animal imaging. Adult male mice were anesthetized with an intra-
peritoneal injection of ketamine and xylazine, and sternomastoid muscle
exposure and NMJ imaging were performed as previously described
(Lichtman et al., 1987; Akaaboune et al., 1999). Briefly, the anesthetized
mouse was placed on its back on the stage of a customized epifluores-
cence microscope, and NM]Js were imaged (Olympus BW51, Optical
Analysis). For imaging at multiple time points, the mouse was sutured
and allowed to fully recover between imaging session. All animal usage
followed methods approved by the University of Michigan Committee
on the Use and Care of Animals.

Quantitative fluorescence imaging. The fluorescence intensity of labeled
receptors and rapsyn-GFP at NMJs was assayed using a quantitative flu-
orescence imaging technique, as described by Turney et al. (1996), with
minor modifications.

To determine rapsyn insertion into synaptic regions over time, NMJs
on muscles that were electroporated with rapsyn-GFP at least 4 weeks
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bathed continuously with p-turbocurare for
8 h (new curare solution was reapplied every
2 h for the duration of the experiment). Ani-
mals were maintained on a small animal venti-
lator for the duration of the experiment to
prevent asphyxiation. At the end of the exper-
iment, the fluorescent recovery of rapsyn-GFP
was measured and compared to the original
GFP fluorescence before bleaching. To deter-
mine AChR accumulation at the same
bleached region over the same time period,
Btx-594 (5 pg/ml, 1.5 h) was added to the neck
of the mouse before imaging again at 8 h.
Muscle denervation. To determine the effect
of denervation on rapsyn-GFP insertion at the
postsynaptic membrane, both sternomastoid
muscles of adult mice were exposed and elec-
troporated with rapsyn-GFP, and the left ster-
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nomastoid muscle was then denervated 21 d
later and prevented from reinnervating by ex-
cisinga 5 mm piece of the sternomastoid nerve.

Results

To study the molecular dynamics of
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Figure 1.

Rap-GFP, rapsyn-GFP; d, day.

previously were assayed for GFP expression, and then discrete regions of
individual synapses were bleached with an argon laser. The recovery of
green fluorescence was quantified both at the bleached region and the
unbleached region. Rapsyn-GFP recovery after bleaching was normal-
ized to the nonbleached sections of the same synapse. To determine
receptor loss and insertion, two different types of labeling methods were
used. For the experiments in the study that involved synapses that were
chronically blocked or denervated, Btx-Alexa 594 (5 ug/ml, 1.5 h) was
applied to the exposed sternomastoid muscle to saturate all AChRs. Su-
perficial NMJs were then imaged at time 0 and at later time points, and
the loss of their fluorescence was assayed. At the end of the experiment, a
second dose of the same fluorescent BTX was added to measure the
insertion rate of receptors. In another set of experiments, receptors were
labeled with either a saturating (5 ug/ml, 1.5 h) or a nonsaturating (2
pg/ml, 2 min) dose of Btx-biotin followed by a saturating dose of
streptavidin-Alexa 594 (10 ug/ml, 4 h), and their loss of fluorescence
over time was assayed. These methods allowed us to estimate AChR
removal and insertion and rapsyn insertion at the same synapses over
time.

Chronic postsynaptic activity blockade. To investigate rapsyn-GFP and
AChR insertion during chronic postsynaptic activity blockade, an ex-
posed sternomastoid muscle that was electroporated with rapsyn-GFP
was saturated with Btx-594 and regions of individual synapses were
bleached of both GFP and Alexa 594 fluorescence. The muscle was then

In

Rapsyn-GFP expression is stable over weeks following electroporation and has no effect on receptor loss. Mouse
sternomastoid muscle was electroporated with rapsyn-GFP, and 4 weeks later the muscle was exposed and NMJs were imaged.
A, A representative synapse showing that rapsyn-GFP fusion protein colocalizes perfectly with AChRs labeled with Btx-594 at
synaptic sites. B, A representative synapse imaged at multiple time points over 6 weeks shows little change in the overall rapsyn-
GFP density. Images were all taken using the same imaging parameters. €, Quantitative fluorescence data from a number of
synapsesimaged as in A. D, Example of a rapsyn-GFP-expressing NMJ on a muscle denervated 8 d previously that was labeled with
a saturating dose of Btx-594 and imaged over 3 d. Note that the presence of rapsyn-GFP does not prevent the accelerated receptor
loss at denervated synapses. E, Quantification of receptor loss from denervated synapses either devoid of or expressing rapsyn-GFP
shows that rapsyn-GFP expression does not slow AChR loss. All data represented as mean == SEM. Den, Denervated; In, innervated;

rapsyn at individual synapses in vivo, we
first asked whether rapsyn is expressed
and stable over time. For this, the sterno-
mastoid muscle of live mice was electro-
porated with plasmid containing a
recombinant rapsyn-GFP construct. We
found that the rapsyn-GFP fusion protein
colocalized perfectly with AChRs at syn-
aptic sites (Fig. 1A). To be sure that overall
rapsyn-GFP expression did not change
over the time period of our experiments
(hours to days), we monitored changes in
the fluorescence of rapsyn-GFP at indi-
vidual synapses over time in mice that had
been electroporated 4 or 6 weeks previ-
ously by assaying the GFP fluorescence at
individual synapses expressing rapsyn-
GFP over time. The fluorescence intensity
at each time point was quantified (Fig.
1B). We found that the average rapsyn-
GFP expression was 87 * 16% (SD, n = 31) of original fluores-
cence after 3d, 91 = 16% (SD, n = 27) after 6 d, 95 = 25% (SD,
n = 14) after 21 d, and 105 = 27% (SD, n = 12) after 42 d (Fig.
1B,C). This indicates that rapsyn-GFP expression is relatively
stable over long periods of time.

It has been shown previously that increased expression of
rapsyn at synapses slows AChR turnover. If our rapsyn-GFP con-
struct added to the total rapsyn density at synapses, we would
predict an increase in AChR lifetime at the synapse. Conversely, if
the rapsyn-GFP construct replaced endogenous rapsyn to keep
rapsyn density constant, we would expect there to be no change in
AChR turnover at synapses expressing rapsyn-GFP. To examine
this, muscles that had previously been electroporated with
rapsyn-GFP were sequentially labeled with saturating doses of
Btx-biotin and streptavidin-Alexa 594 to label all AChRs. We
then monitored the loss of labeled AChRs from superficial syn-
apses on the same muscle from synapses that were both express-
ing rapsyn-GFP and not expressing rapsyn-GFP. Three days after
the initial labeling, 58 = 5% (SD, n = 15) of the original AChR
fluorescent signal remained at synapses devoid of rapsyn-GFP,
and 60 * 6% (SD, n = 14) remained at synapses that were ex-
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pressing some visible level of rapsyn-GFP. This indicates that the
loss of receptors was independent of rapsyn-GFP expression in
synapses. We further explored whether the presence of rapsyn-
GFP would prevent accelerated AChR loss observed at NM]Js on
denervated muscles. To do this the left sternomastoid muscle
expressing rapsyn-GFP that had been surgically denervated 8 d
previously was exposed, labeled with Btx-594, and imaged. Three
days later, we found 28 = 5% (SD, n = 17) of fluorescence re-
mained at denervated synapses expressing rapsyn-GFP and 27 *
4% (SD, n = 11) remained at denervated synapses without
rapsyn-GFP, while 57 * 4% (SD, n = 21) remained at synapses
on the non-denervated muscle (Fig. 1D, E). These data indicate
that rapsyn-GFP expression at synapses does not slow the accel-
erated AChR removal. Finally, immunohistochemistry was
performed on muscle fibers expressing different levels of rapsyn-
GFP using an anti-rapsyn antibody that has been shown previ-
ously to recognize both rapsyn and rapsyn-GFP fusion proteins
(Gervasio and Phillips, 2005). Using quantitative immunofluo-
rescence, we found that the overall density of rapsyn at synapses
expressing rapsyn-GFP (13.46 = 4 SD, arbitrary units, n = 15)
was not significantly different from rapsyn density at NMJs not
expressing rapsyn-GFP (12.85 =+ 3.05 SD, arbitrary units, n = 14)
(supplemental Fig. 1, available at www.jneurosci.org as supple-
mental material).

Having found that rapsyn-GFP colocalizes perfectly with
AChRs at synapses, is able to cluster AChRs similarly to endoge-
nous rapsyn, does not alter the overall rapsyn density or normal
AChR dynamics, and is synaptically expressed at a constant level
over the time window of our experiments, we felt comfortable
using this construct to estimate the rate of rapsyn turnover at
synapses in vivo. Adult mice were electroporated with rapsyn-
GFP, and ~4 weeks after electroporation the sternomastoid mus-
cle was reexposed and NM]Js expressing rapsyn-GFP were
imaged. Discrete portions of individual junctions were carefully
traced with an argon laser to remove the fluorescence without
altering fluorescent expression at other regions of the NM]J.
When the recovery of fluorescence at the bleached portion of
each junction was measured at later time points and normalized
to the amount of rapsyn-GFP expression at unbleached region of
the same junction, we found that 61 * 17% (SD, n = 32) and
83 * 14% (SD, n = 14) of fluorescence was recovered at bleached
regions after 24, and 72 h, respectively (Figs. 2A, B). The recovery
of fluorescence at bleached areas was similar in synapses express-
ing low or high levels of rapsyn-GFP (Fig. 2C), suggesting the
rapid recovery is not dependent on the expression level of exog-
enous rapsyn.

Next we asked whether receptors and rapsyn have similar syn-
aptic lifetimes. To measure AChR and rapsyn-GFP dynamics at
the same synapse, we bleached rapsyn-GFP, and then immedi-
ately labeled the AChRs with a fluorescent tag. In this way we
could measure the recovery of rapsyn-GFP fluorescence and the
loss of AChR-Alexa fluorescence (AChR removal) simulta-
neously. To do this, the sternomastoid muscles of mice that were
electroporated with rapsyn-GFP were labeled with a subsaturat-
ing dose of Btx-biotin (to label a small proportion of the receptors
(<20%) and thus allow the synapses to remain active), discrete
regions of synapses expressing rapsyn-GFP were bleached, and
the synapse was imaged. The sternomastoid muscle was then
immediately incubated with streptavidin-Alexa 594 (strept-594)
to label all biotin sites and NMJs were imaged. We found that
only 5 h after rapsyn-GFP bleaching, 26 * 10% (SD, n = 14) of
original GFP fluorescence had recovered at bleached sites. After
29 h rapsyn-GFP insertion was 62 + 19% (SD, n = 18) of original
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Figure 2.  Rapsyn-GFP fluorescence is recovered rapidly at bleached synapses. Sternomas-
toid muscles of living mice were electroporated with rapsyn-GFP, and 4 weeks later the muscles
were reexposed, and synapses expressing rapsyn-GFP were imaged. The fluorescence from
discrete sections of individual junctions was then removed with a laser, and the recovery of
fluorescence was monitored over 3 d. A, Example of a neuromuscular junction that was imaged
at time 0 and immediately bleached and reimaged at 24 and 72 h. B, Graph summarizing data
obtained from many synapses. All data represent mean == SEM. C, Representative images
showing that the recovery of rapsyn-GFP is nearly equal at synapses expressing low or high
rapsyn-GFP level.

fluorescence, and after 77 h insertion was 89 = 12% (SD, n = 16)
of original fluorescence. This rate of insertion was similar to the
insertion after 24 and 72 h when rapsyn-GFP-expressing synapses
were bleached in the absence of any bungarotoxin (Fig. 2). Re-
ceptor removal at the same synapses over the same 24 and 72 h
time periods were 7 = 5% (SD, n = 5) and 25 = 8% (SD, n = 5)
of original fluorescence, respectively (Fig. 3A,C). These data in-
dicate that rapsyn is much more dynamic than AChRs.

Similar experiments were also performed on junctions that
had been initially labeled with saturating doses of Btx-biotin and
strept-594, which transiently blocks muscle action potentials until
the progressive insertion of new, unlabeled receptors over time
restore activity. After 5, 29, and 77 h, rapsyn-GFP insertion (after
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Figure 3.  Rapsyn and AChR dynamics at the NMJ. The sternomastoid muscle was exposed, rapsyn-GFP was bleached, and
muscles wereimmediately incubated in either saturating (A) or nonsaturating (B) doses of Btx-biotin followed by a saturating dose
of strept-594. After labeling, synapses were imaged, and initial fluorescence from AChRs and recovered fluorescence from rapsyn-
GFP was measured. After 1and/or 3 d, the muscle was reexposed, and the same synapses were again imaged. , D, Receptor loss
(D) and rapsyn insertion (€) from many synapses measured as in A and B. Note that AChR removal is significantly and dramatically
altered at saturated (postsynaptic activity blocked) versus unsaturated (postsynaptic activity not blocked) synapses (*p << 0.05),
while rapsyn insertion at these same synapses is unaffected by activity blockade ( p > 0.05 at all time points, n.s.). All data
represent mean = SEM.
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Figure 4.  Rapsyn-GFP synaptic turnover is not altered by synaptic activity blockade. Sternomastoid muscles of live mice elec-
troporated with rapsyn-GFP were bathed with a saturating dose of Btx-594. A, The doubly labeled NMJs (expressing rapsyn-GFP
and fluorescent Btx) were imaged, the GFP fluorescence from rapsyn-GFP and the Alexa 594 fluorescence from AChR-Btx-594 were
removed from discrete regions of synapses with a laser, and the muscle was immediately incubated in the AChR antagonist, curare,
for the duration of the experiment. After 8 h, fresh Btx-594 was applied to label any newly inserted receptors, and images were
again obtained. Note that rapsyn insertion is far greater than AChR insertion at the same synapse. B, A sample image of a synapse
that was imaged and bleached of rapsyn-GFP fluorescence in the absence of any postsynaptic activity blockade. €, Data obtained
from 7 and 13 synapses from experiments done as in A and B, respectively. Data represent mean = SEM.
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photobleaching) was 26 * 12% (SD, n =
34), 70 =+ 20% (SD, n = 26), and 82 * 16%
(SD, n = 17) respectively (Fig. 3B,C). At
the same synapse, receptor removal was
30 = 10% (SD, n = 40) and 45 *= 7% (n =
11) of original fluorescence at 24 and 72 h
(Fig. 3B). These data indicate that rapsyn
insertion may be unaffected by transient
AChR blockade and therefore indepen-
dent of postsynaptic activity. This led us to
directly examine the effect of synaptic ac-
tivity on rapsyn insertion.

Previous studies have shown that the
insertion of receptors into the postsynap-
tic membrane is regulated by synaptic activ-
ity. Since rapsyn binds directly to receptors,
we asked whether postsynaptic rapsyn dy-
namics are also manipulated by synaptic ac-
tivity. To investigate this, sternomastoid
muscles electroporated with rapsyn-GFP
were labeled with bungarotoxin-Alexa 594
(Btx-594), and then both the GFP and Al-
exa 594 fluorescence were removed from
discrete regions of individual NMJs with
an argon laser. The sternomastoid mus-
cles were then continuously bathed with
the AChR antagonist curare to chronically
block muscle activity for 8 h. At the end of
the experiment, the sternomastoid muscle
was again bathed with Btx-594 to label
new receptors that had been inserted into
the synapse over this time. We found that
AChR insertion was only 5 *+ 2% (SD, n =
7) of original fluorescence, while rapsyn-
GFP recovery was 29 * 8% SD of original
fluorescence. When we monitored the re-
covery of rapsyn-GFP at synapses that had
been only transiently blocked with bunga-
rotoxin (an initial, saturating dose of Btx-
594) or that were without blockade, we
found that the rapsyn-GFP fluorescent re-
covery rates were similar to recovery at
chronically blocked synapses (Fig. 4B, C).
The change in fluorescence at unbleached
portions of chronically blocked synapses
was negligible (an increase of 4 * 5% SD
of original fluorescence), indicating that
synaptic activity has no effect on either the
loss or insertion of rapsyn-GFP at synap-
tic sites. This is in stark contrast to the
dramatic effect that activity blockade has
on AChR dynamics.

Discussion

In these studies we took advantage of a
green fluorescent fusion protein to inves-
tigate the dynamics of the inaccessible in-
tracellular scaffold protein, rapsyn, at the
neuromuscular junction of living mice.
We found that the turnover rate of rapsyn
sharply contrasts with receptors at the
same postsynaptic density of functioning
synapses: rapsyn turns over at synapses
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4-6 times more rapidly (¢,,, of ~1 d) than receptors (,,, ~6 d).
In addition, we found that alterations in synaptic activity had
distinct effects on the dynamics of rapsyn and receptors at the
same synapse: when postsynaptic activity was blocked, receptor
lifetime was dramatically reduced while rapsyn lifetime remained
unchanged. Therefore, despite the intimate association of rapsyn
with receptors, our data indicate that receptors and rapsyn are
regulated independently at the same synapses.

In contrast to previous studies showing that the overexpres-
sion of rapsyn through electroporation of rapsyn-GFP into mus-
cle cells in vivo can stabilize receptors (Gervasio and Phillips,
2005), our results indicate that rapsyn-GFP expression at clusters
did not alter AChR stability. Since overall rapsyn density was
similar at synapses expressing rapsyn-GFP and at synapses devoid
of the fusion protein, it seems likely that exogenous rapsyn-GFP
is able to replace endogenous rapsyn at clusters without increas-
ing rapsyn density; alternatively the number of exogenous
rapsyn-GFP molecules inserted at clusters was negligible despite
the strong GFP fluorescence signal. Regardless, in our study
rapsyn-GFP functioned like endogenous rapsyn (it specifically
clustered and colocalized with receptors at NMJs, its expression
did not alter the clustering, number, or density of receptors at the
NM]J), and did not alter receptor stability on either innervated or
denervated muscles.

The most significant result of the current study is the highly
transient nature of rapsyn in the postsynaptic density. It is possi-
ble that this behavior may be explained by a permanent exchange
between bound and unbound forms of rapsyn. This raises the
question of what role rapid rapsyn dynamics may have in regu-
lating postsynaptic AChR dynamics and overall synaptic AChR
density over time. It is conceivable that the high dynamism of
rapsyn may have an impact on the rates of insertion, removal, or
recycling of receptors at the NMJ, which serve as the basis for
synaptic plasticity. Indeed the importance of rapsyn in the regu-
lation of receptor density at synaptic sites has been shown in
myasthenia syndrome, in which the receptor number is signifi-
cantly decreased, and consequently the safety factor of the NM]J is
compromised.

Although the present study represents the first time that in-
tracellular protein dynamics have been investigated at the NMJ in
vivo, a small number of other studies have examined the dynam-
ics of scaffolding proteins at other synapses. These studies have
found that postsynaptic scaffold proteins at excitatory and inhib-
itory synapses exhibit similar fast dynamics relative to the recep-
tors anchored at the postsynaptic site. For example, studies of
PSD-95, which binds directly to NMDA receptors and indirectly
to AMPA receptors and nicotinic AChRs in the CNS, have found
that the exchange rate of individual PSD-95 molecules is much
faster than the associated receptors, as determined by FRAP-
(Okabe et al., 2001; Rasse et al., 2005; Gray et al., 2006). At
glycinergic synapses, the glycine receptor-associated protein
gephyrin has also been shown to turn over rapidly (Hanus et al.,
2006). Interestingly, similar to rapsyn, gephyrin turnover in this
study was also shown to be regulated differently from the recep-
tors to which they bind.

Finally, our work raises the question of why AChR dynamics
are dramatically altered by activity while rapsyn-GFP are unaf-
fected. One potential explanation for these data is that rapsyn
insertion may be insensitive to changes in postsynaptic activity,
but regulated instead by nerve factors. Consistent with this, agrin
signaling has been shown to increase the expression and targeting
of rapsyn to the postsynaptic membrane (Brockhausen et al.,

Bruneau and Akaaboune e Rapsyn Dynamics

2008). It would also be worthwhile to see whether rapsyn is sub-
ject to palmitoylation and depalmitoylation or ubiquitination
processes. Such mechanisms have been reported for scaffold pro-
teins at the excitatory synapses (Topinka and Bredt, 1998;
El-Husseini and Bredt, 2002), which could be involved in synap-
tic remodeling and plasticity.

The results reported here suggest that, despite the stability of
the synaptic structure over the lifetime of the animal (Balice-
Gordon and Lichtman, 1990), individual molecules such as
rapsyn and receptors are highly dynamic and are constantly ex-
changed between the postsynaptic membrane and internal com-
partments. Extending this investigation to other scaffolding
proteins of the synapse might allow better understanding of the
dynamic processes behind plasticity.
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