Dynamics of Gas-Fluidized Granular Rods

Loading...
Thumbnail Image
Penn collection
Department of Physics Papers
Degree type
Discipline
Subject
Physical Sciences and Mathematics
Physics
Funder
Grant number
License
Copyright date
Distributor
Related resources
Author
Contributor
Abstract

We study a quasi-two-dimensional monolayer of granular rods fluidized by a spatially and temporally homogeneous upflow of air. By tracking the position and orientation of the particles, we characterize the dynamics of the system with sufficient resolution to observe ballistic motion at the shortest time scales. Particle anisotropy gives rise to dynamical anisotropy and superdiffusive dynamics parallel to the rod’s long axis, causing the parallel and perpendicular mean-square displacements to become diffusive on different time scales. The distributions of free times and free paths between collisions deviate from exponential behavior, underscoring the nonthermal character of the particle motion. The dynamics show evidence of rotationaltranslational coupling similar to that of an anisotropic Brownian particle. We model rotational-translational coupling in the single-particle dynamics with a modified Langevin model using nonthermal noise sources. This suggests a phenomenological approach to thinking about collections of self-propelling particles in terms of enhanced memory effects.

Advisor
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Publication date
2009-04-01
Journal title
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
Daniels, L.J., Y. Park, T.C. Lubensky and D.J. Durian. (2009). "Dynamics of gas-fluidized granular rods." Physical Review E. 79, 041301. © 2009 The American Physical Society http://dx.doi.org/10.1103/PhysRevE.79.041301
Recommended citation
Collection