
Department of Physics Papers
Document Type
Journal Article
Date of this Version
4-15-1981
Publication Source
Physical Review B
Volume
23
Issue
8
Start Page
3591
Last Page
3596
DOI
10.1103/PhysRevB.23.3591
Abstract
An n-state Potts lattice gas Hamiltonian is constructed whose partition function is shown to reproduce in the limit n→0 the generating function for the statistics of either lattice animals or percolating clusters for appropriate choices of potentials. This model treats an ensemble of single clusters terminated by weighted perimeter bonds rather than clusters distributed uniformly throughout the lattice. The model is studied within mean-field theory as well as via the ε expansion. In general, cluster statistics are described by the lattice animal's fixed point. The percolation fixed point appears as a multicritical point in a space of potentials not obviously related to that of the usual one-state Potts model.
Recommended Citation
Harris, A., & Lubensky, T. C. (1981). Connection Between Percolation and Lattice Animals. Physical Review B, 23 (8), 3591-3596. http://dx.doi.org/10.1103/PhysRevB.23.3591
Date Posted: 12 August 2015
This document has been peer reviewed.