Department of Physics Papers

Document Type

Journal Article

Date of this Version

1-11-2013

Abstract

We study connections between vibrational spectra and average nearest neighbor number in disordered clusters of colloidal particles with attractive interactions. Measurements of displacement covariances between particles in each cluster permit calculation of the stiffness matrix, which contains effective spring constants linking pairs of particles. From the cluster stiffness matrix, we derive vibrational properties of corresponding “shadow” glassy clusters, with the same geometric configuration and interactions as the “source” cluster but without damping. Here, we investigate the stiffness matrix to elucidate the origin of the correlations between the median frequency of cluster vibrational modes and average number of nearest neighbors in the cluster. We find that the mean confining stiffness of particles in a cluster, i.e., the ensemble-averaged sum of nearest neighbor spring constants, correlates strongly with average nearest neighbor number, and even more strongly with median frequency. Further, we find that the average oscillation frequency of an individual particle is set by the total stiffness of its nearest neighbor bonds; this average frequency increases as the square root of the nearest neighbor bond stiffness, in a manner similar to the simple harmonic oscillator.

Comments

Yunker, P. J., Zhang, Z, Gratale, M., Chen, K., & Yodh, A. G. (2013). Relationship between neighbor number and vibrational spectra in disordered colloidal clusters with attractive interactions. Journal of Chemical Physics, 138(12), 12A525. doi: 10.1063/1.4774076

© 2013 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.

Included in

Physics Commons

Share

COinS
 

Date Posted: 27 February 2013

This document has been peer reviewed.