Theoretical Investigation of the Evolution of the Topological Phase of Bi2Se3 under Mechanical Strain

Loading...
Thumbnail Image
Penn collection
Department of Physics Papers
Degree type
Discipline
Subject
Physical Sciences and Mathematics
Physics
Funder
Grant number
License
Copyright date
Distributor
Related resources
Contributor
Abstract

The topological insulating phase results from inversion of the band gap due to spin-orbit coupling at an odd number of time-reversal symmetric points. In Bi2Se3, this inversion occurs at the Γ point. For bulk Bi2Se3, we have analyzed the effect of arbitrary strain on the Γ point band gap using density functional theory. By computing the band structure both with and without spin-orbit interactions, we consider the effects of strain on the gap via Coulombic interaction and spin-orbit interaction separately. While compressive strain acts to decrease the Coulombic gap, it also increases the strength of the spin-orbit interaction, increasing the inverted gap. Comparison with Bi2Te3 supports the conclusion that effects on both Coulombic and spin-orbit interactions are critical to understanding the behavior of topological insulators under strain, and we propose that the topological insulating phase can be effectively manipulated by inducing strain through chemical substitution.

Advisor
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Publication date
2011-08-19
Journal title
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
Suggested Citation: Young, S.M. et al. (2011). Theoretical investigation of the evolution of the topological phase of Bi2Se3 under mechanical strain. Physical Review B. 84, 085106. © 2011 American Physical Review http://dx.doi.org/10.1003/PhysRevB.84.085106
Recommended citation
Collection