
Operations, Information and Decisions Papers
Document Type
Journal Article
Date of this Version
6-2011
Publication Source
BMC Bioinformatics
Volume
12
Issue
3
Start Page
1
Last Page
10
DOI
10.1186/1471-2105-12-S3-S2
Abstract
There are millions of public posts to medical message boards by users seeking support and information on a wide range of medical conditions. It has been shown that these posts can be used to gain a greater understanding of patients’ experiences and concerns. As investigators continue to explore large corpora of medical discussion board data for research purposes, protecting the privacy of the members of these online communities becomes an important challenge that needs to be met. Extant entity recognition methods used for more structured text are not sufficient because message posts present additional challenges: the posts contain many typographical errors, larger variety of possible names, terms and abbreviations specific to Internet posts or a particular message board, and mentions of the authors’ personal lives. The main contribution of this paper is a system to de-identify the authors of message board posts automatically, taking into account the aforementioned challenges. We demonstrate our system on two different message board corpora, one on breast cancer and another on arthritis. We show that our approach significantly outperforms other publicly available named entity recognition and de-identification systems, which have been tuned for more structured text like operative reports, pathology reports, discharge summaries, or newswire.
Recommended Citation
Benton, A., Hill, S., Ungar, L., Chung, A., Leonard, C., Freeman, C., & Holmes, J. H. (2011). A System for De-Identifying Medical Message Board Text. BMC Bioinformatics, 12 (3), 1-10. http://dx.doi.org/10.1186/1471-2105-12-S3-S2
Date Posted: 27 November 2017
This document has been peer reviewed.