Metal-Insulator Transition in Doped Single-Wall Carbon Nanotubes

Loading...
Thumbnail Image
Penn collection
Departmental Papers (MSE)
Degree type
Discipline
Subject
Funder
Grant number
License
Copyright date
Distributor
Related resources
Author
Vavro, Juraj
Kikkawa, J. M.
Contributor
Abstract

We find strong evidence for a metal-insulator (MI) transition in macroscopic single wall carbon nanotube conductors. This is revealed by systematic measurements of resistivity and transverse magnetoresistance (MR) in the ranges 1.9-300 K and 0-9 Tesla, as a function of p-type redox doping. Strongly H2SO4-doped samples exhibit small negative MR, and the resistivity is low and only weakly temperature dependent. Stepwise de-doping by annealing in vacuum induces a MI transition. Critical behavior is observed near the transition, with ρ(T) obeying power-law temperature dependence, ρ(T) ∝ T -β. In the insulating regime (high annealing temperatures) the ρ(T) behavior ranges from Mott-like 3-dimensional (3D) variable-range hopping (VRH), ρ(T) ∝ exp[(-T0/T)-1/4], to Coulomb-gap (CGVRH) behavior, ρ(T) ∝ exp[(-T0/T)-1/2]. Concurrently, MR(B) becomes positive for large B, exhibiting a minimum at magnetic field Bmin. The temperature dependence of Bmin can be characterized by Bmin(T) = Bc(1 - T/Tc) for a large number of samples prepared by different methods. Below a sample-dependent crossover temperature Tc, MR(B) is positive for all B. The observed changes in transport properties are explained by the effect of doping on semiconducting SWNTs and tube-tube coupling.

Advisor
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Publication date
2005-01-14
Journal title
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
Postprint version. Copyright American Physical Society. Published in Physical Review B, Volume 71, Article 155410, 2005, 11 pages. Publisher URL: http://link.aps.org/abstract/PRB/v71/e155410
Postprint version. Copyright American Physical Society. Published in Physical Review B, Volume 71, Article 155410, 2005, 11 pages. Publisher URL: http://link.aps.org/abstract/PRB/v71/e155410
Recommended citation
Collection