Departmental Papers (MSE)

Document Type

Journal Article

Date of this Version

January 2004


Fibers of single wall carbon nanotubes extruded from super-acid suspensions exhibit preferred orientation along their axes. We characterize the alignment by x-ray fiber diagrams and polarized Raman scattering, using a model which allows for a completely unaligned fraction. This fraction ranges from 0.17 to 0.05±0.02 for three fibers extruded under different conditions, with corresponding Gaussian full widths at half-maximum (FWHM) from 64o to 44o±2o. FWHM, aligned fraction, electrical and thermal transport all improve with decreasing extrusion orifice diameter. Resistivity, thermoelectric power and resonant-enhanced Raman scattering indicate that the neat fibers are strongly p-doped; the lowest observed ρ is 0.25mΩcm at 300 K. High temperature annealing increases ρ by more than 1 order of magnitude and restores the Raman resonance associated with low-energy van Hove transitions, without affecting the nanotube alignment.


Postprint version. Published in Journal of Applied Physics, Volume 95, Issue 2, January 15, 2004, pages 649-655.
Publisher URL:



Date Posted: 21 January 2005

This document has been peer reviewed.