Departmental Papers (MSE)

Document Type

Journal Article

Date of this Version

December 2001


Macroscopic properties of CrOCN thin films are related directly to composition and property variations on multiple length scales. Compositions resolved on a nanometer scale were measured in-depth in 120–150 nm thick CrOCN films by sputtered neutral mass spectroscopy. A statistical analysis of composition identifies the particular coordinations of the various anions with Cr that form preferentially under relevant processing conditions. Near-edge structure in electron energy loss from transmission electron microscopy and the Cr core level shift in X-ray photoemission spectroscopy further support this conclusion. A wide range of compositions are described in terms of mixtures of binary and ternary compounds, and optical absorption is found to be correlated with the presence of Cr4+ within this description. It appears that the presence of the unfilled t2g state is responsible for optical absorption in the range of 0.5–6 eV and that a critical concentration of Cr4+ in certain species within the system is required for the transition to occur. These results conflict with the suggestion that a percolated network of metallic clusters is responsible for the change in properties.


Copyright The American Ceramic Society. Reprinted from Journal of the American Ceramic Society, Volume 84, Issue 12, December 2001, pages 2873-2881.



Date Posted: 19 November 2004

This document has been peer reviewed.