Departmental Papers (MSE)

Document Type

Journal Article

Date of this Version

2-4-2008

Abstract

In a recent letter [T. Yildirim and S. Çiraci, Phys. Rev. Lett. 94, 175501 (2005)], the unusual hydrogen storage capacity of Ti decorated carbon nanotubes has been revealed. The present paper extends this study further to investigate the hydrogen uptake by light transition-metal atoms decorating various carbon-based nanostructures in different types of geometry and dimensionality, such as carbon linear chain, graphene, and nanotubes. Using first-principles plane-wave method we show that not only outer but also inner surface of a large carbon nanotube can be utilized to bind more transition-metal atoms and hence to increase the storage capacity. We also found that scandium and vanadium atoms adsorbed on a carbon nanotube can bind up to five hydrogen molecules. Similarly, light transition-metal atoms can be adsorbed on both sides of graphene and each adsorbate can hold up to four hydrogen molecules yielding again a high-storage capacity. Interestingly, our results suggest that graphene can be considered as a potential high-capacity H2 storage medium. We also performed transition state analysis on the possible dimerization of Ti atoms adsorbed on the graphene and single-wall carbon nanotube.

Comments

Suggested Citation:
E. Durgun, S. Çıracı and T. Yildirim. (2008). "Functionalization of carbon-based nanostructures with light transition-metal atoms for hydrogen storage." Physical Review B. 77, 085405.

© 2008 The American Physical Society
http://dx.doi.org/10.1103/PHysRevB.77.085405

Share

COinS
 

Date Posted: 25 January 2011

This document has been peer reviewed.