Departmental Papers (MSE)

Document Type

Journal Article

Date of this Version

December 2008

Abstract

Self-assembled nanocapsules containing a hydrophilic core and a crosslinked yet thermosensitive shell have been successfully prepared using poly(ethylene-oxide)-poly(propylene-oxide)-poly(ethylene-oxide) block copolymers, 4-nitrophenyl chloroformate, gelatin, and 1-ethyl-3-(3- dimethylaminopropyl) carbodiimide. The core is further rendered magnetic by incorporating iron oxide nanoparticles via internal precipitation to enable externally controlled actuation under magnetic induction. The spherical nanocapsules exhibit a hydrophilic-to-hydrophobic transition at a characteristic but tunable temperature reaching 40ºC, triggering a size contraction and shrinkage of the core. The core content experiences very little leakage at 25ºC, has a half life about 5 h at 45ºC, but bursts out within a few minutes under magnetic heating due to iron oxide coarsening and core/shell disruption. Such burst-like response may be utilized for controlled drug release as illustrated here using a model drug Vitamin B12.

Comments

Pre-print version. To be published in Advanced Functional Materials, 2009. Publisher URL: http://dx.doi.org/10.1002/adfm.200801304

Share

COinS
 

Date Posted: 09 December 2008

This document has been peer reviewed.