Departmental Papers (MSE)

Document Type

Journal Article

Date of this Version

June 2008


Everyday devices ranging from computers and cell phones to the LEDs inside traffic lights exploit quantum mechanics and rely on precisely controlled structures and materials to function optimally. Indeed, the goal in device fabrication is to control the structure and composition of materials, often at the atomic scale, and thereby fine-tune their properties in the service of ever-more-sophisticated technology. Researchers have imaged the structures of materials at atomic scales for nearly half a century, often using electrons, x rays, or atoms on sharp tips (see the article by Tien Tsong in PHYSICS TODAY, March 2006, page 31). The ability to survey properties of the materials has proven more challenging.

In recent years, however, advances in the development of scanning probe microscopy have allowed researchers not only to image a surface, but also to quantify its local characteristics— often with a resolution finer than 10 nm. We highlight several SPM techniques here, with an emphasis on those that address electronic and dielectric properties of materials and devices.


Reprinted from Physics Today, Volume 61, Issue 6, June 2008.
Publisher URL:



Date Posted: 16 July 2008

This document has been peer reviewed.