Influence of Non-Stoichiometry on the Structure and Properties of Ba(Zn1/3Nb2/3)O3 Microwave Dielectrics: I. Substitution of Ba3W2O9

Loading...
Thumbnail Image
Penn collection
Departmental Papers (MSE)
Degree type
Discipline
Subject
Funder
Grant number
License
Copyright date
Distributor
Related resources
Author
Contributor
Abstract

A narrow region of Zn-vacancy-containing cubic perovskites was formed in the (1-x)Ba3(ZnNb2)O9-x)Ba3W2O9 system up to 2 mol%substitution (x=0.02). The introduction of cation vacancies enhanced the stability of the 1:2 B-site ordered form of the structure, Ba(Zn1-x-x)1/3(Nb1-xWx)2/3O3, which underwent an order–disorder transition at 1410°C, ∼35° higher than pure Ba(Zn1/3Nb2/3)O3. The Zn vacancies also accelerated the kinetics of the ordering reaction, and samples with x=0.006 comprised large ordered domains with a high lattice distortion (c/a=1.226) after a 12 h anneal at 1300°C. The tungstate-containing solid solutions can be sintered to a high density at 1390°C, and the resultant ordered ceramics exhibit some of the highest microwave dielectric Q factors (Q×f=1 18 000 at 8 GHz) reported for a niobate-based perovskite.

Advisor
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Publication date
2006-07-01
Journal title
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
Copyright The American Ceramic Society. Reprinted from Journal of the American Ceramic Society, Volume 89, Issue 7, July 2006, pages 2239-2249.
Recommended citation
Collection