Departmental Papers (MEAM)

Document Type

Journal Article

Subject Area


Date of this Version

September 2006


Copyright 2006 IEEE. Reprinted from IEEE Robotics and Automation Magazine, Volume 13, Issue 3, September 2006, pages 16-25.

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of the University of Pennsylvania's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to By choosing to view this document, you agree to all provisions of the copyright laws protecting it.


Unmanned aerial vehicles (UAVs) can be used to cover large areas searching for targets. However, sensors on UAVs are typically limited in their accuracy of localization of targets on the ground. On the other hand, unmanned ground vehicles (UGVs) can be deployed to accurately locate ground targets, but they have the disadvantage of not being able to move rapidly or see through such obstacles as buildings or fences. In this article, we describe how we can exploit this synergy by creating a seamless network of UAVs and UGVs. The keys to this are our framework and algorithms for search and localization, which are easily scalable to large numbers of UAVs and UGVs and are transparent to the specificity of individual platforms. We describe our experimental testbed, the framework and algorithms, and some results.



Date Posted: 27 November 2006

This document has been peer reviewed.