Departmental Papers (MEAM)

Document Type

Journal Article

Date of this Version

October 2007


Copyright 2007 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. Reprinted in Journal of Applied Physics, Volume 102, Article 074115, October 2007, 7 pages.
Publisher URL:


Diamond thin films with a broad range of microstructures from a ultrananocrystalline diamond (UNCD) form developed at Argonne National Laboratory to a microcrystalline diamond (MCD) form have been grown with different hydrogen percentages in the Ar/CH4 gas mixture used in the microwave plasma enhanced chemical vapor deposition (CVD) process. The dielectric properties of the CVD diamond thin films have been studied using impedance and dc measurements on metal-diamond-metal test structures. Close correlations have been observed between the hydrogen content in the bulk of the diamond films, measured by elastic recoil detection (ERD), and their electrical conductivity and capacitance-frequency (C-f) behaviors. Addition of hydrogen gas in the Ar/CH4 gas mixture used to grow the diamond films appears to have two main effects depending on the film microstructure, namely, (a) in the UNCD films, hydrogen incorporates into the atomically abrupt grain boundaries satisfying sp2 carbon dangling bonds, resulting in increased resistivity, and (b) in MCD, atomic hydrogen produced in the plasma etches preferentially the graphitic phase codepositing with the diamond phase, resulting in the statistical survival and growth of large diamond grains and dominance of the diamond phase, and thus having significant impact on the dielectric properties of these films.


chemical vapour deposition, diamond, dielectric properties, dielectric thin films, grain boundaries, nanostructured materials, nuclear chemical analysis



Date Posted: 19 November 2007

This document has been peer reviewed.