Physics-Based Modeling of Nonrigid Objects for Vision and Graphics (Dissertation)
Files
Penn collection
Degree type
Discipline
Subject
Funder
Grant number
License
Copyright date
Distributor
Related resources
Author
Contributor
Abstract
This thesis develops a physics-based framework for 3D shape and nonrigid motion modeling for computer vision and computer graphics. In computer vision it addresses the problems of complex 3D shape representation, shape reconstruction, quantitative model extraction from biomedical data for analysis and visualization, shape estimation, and motion tracking. In computer graphics it demonstrates the generative power of our framework to synthesize constrained shapes, nonrigid object motions and object interactions for the purposes of computer animation. Our framework is based on the use of a new class of dynamically deformable primitives which allow the combination of global and local deformations. It incorporates physical constraints to compose articulated models from deformable primitives and provides force-based techniques for fitting such models to sparse, noise-corrupted 2D and 3D visual data. The framework leads to shape and nonrigid motion estimators that exploit dynamically deformable models to track moving 3D objects from time-varying observations. We develop models with global deformation parameters which represent the salient shape features of natural parts, and local deformation parameters which capture shape details. In the context of computer graphics, these models represent the physics-based marriage of the parameterized and free-form modeling paradigms. An important benefit of their global/local descriptive power in the context of computer vision is that it can potentially satisfy the often conflicting requirements of shape reconstruction and shape recognition. The Lagrange equations of motion that govern our models, augmented by constraints, make them responsive to externally applied forces derived from input data or applied by the user. This system of differential equations is discretized using finite element methods and simulated through time using standard numerical techniques. We employ these equations to formulate a shape and nonrigid motion estimator. The estimator is a continuous extended Kalman filter that recursively transforms the discrepancy between the sensory data and the estimated model state into generalized forces. These adjust the translational, rotational, and deformational degrees of freedom such that the model evolves in a consistent fashion with the noisy data. We demonstrate the interactive time performance of our techniques in a series of experiments in computer vision, graphics, and visualization.