Institute for Medicine and Engineering Papers

Document Type

Journal Article

Date of this Version

August 2001


Copyright 2001 IEEE. Reprinted from IEEE Transactions on Instrumentation and Measurement, Volume 50, Issue 4, August 2001, pages 910-914.

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of the University of Pennsylvania's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to By choosing to view this document, you agree to all provisions of the copyright laws protecting it.


Dual-energy measurements are presented utilizing a novel slot-scan digital radiographic imaging detector, operating on gaseous solid state ionization principles. The novel multimedia detector has two basic functional components: a noble gas-filled detector volume operating on gas microstrip principles, and a solid state detector volume. The purpose of this study is to investigate the potential use of this multimedia detector for enhanced dual-energy imaging. The experimental results indicate that the multimedia detector exhibits a large subtracted signal-to-noise ratio. Although the intrinsic merit of this device is being explored for medical imaging, potential applications of the multimedia detector technology in other industrial areas, such as aerospace imaging, aviation security, and surveillance, are also very promising.


radiographic imaging, signal-to-noise ratio, x-ray energy spectrum



Date Posted: 30 July 2007

This document has been peer reviewed.