The Cytoskeleton Under External Fluid Mechanical Forces: Hemodynamic Forces Acting on the Endothelium

Loading...
Thumbnail Image
Penn collection
Institute for Medicine and Engineering Papers
Degree type
Discipline
Subject
shear stress
green fluorescent protein
vimentin
intermediate filaments
decentralization model
mechanotransduction
Funder
Grant number
License
Copyright date
Distributor
Related resources
Author
Helmke, Brian P
Contributor
Abstract

The endothelium, a single layer of cells that lines all blood vessels, is the focus of intense interest in biomechanics because it is the principal recipient of hemodynamic shear stress. In arteries, shear stress has been demonstrated to regulate both acute vasoregulation and chronic adaptive vessel remodeling and is strongly implicated in the localization of atherosclerotic lesions. Thus, endothelial biomechanics and the associated mechanotransduction of shear stress are of great importance in vascular physiology and pathology. Here we discuss the important role of the cytoskeleton in a decentralization model of endothelial mechanotransduction. In particular, recent studies of four-dimensional cytoskeletal motion in living cells under external fluid mechanical forces are summarized together with new data on the spatial distribution of cytoskeletal strain. These quantitative studies strongly support the decentralized distribution of luminally imposed forces throughout the endothelial cell.

Advisor
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Publication date
2002-03-01
Journal title
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
Postprint version. Published in Annals of Biomedical Engineering, Volume 30, Number 3, March 2002, pages 284-296. Publisher URL: http://dx.doi.org/10.1114/1.1467926
Recommended citation
Collection