Center for Human Modeling and Simulation

Generative-Discriminitive Basis Learning for Medical Imaging

Ben Taskar, University of Pennsylvania
Nematollah K. Batmanghelich, IEEE
Christos Davatzikos, IEEE

Document Type Journal Article

Taskar, B., Batmanghelich, N. K., & Davatzikos, C. (2011). Generative-Discriminitive Basis Learning for Medical Imagination. IEEE Transactions on Medical Imaging Journal.

Abstract

This paper presents a novel dimensionality reduction method for classification in medical imaging. The goal is to transform very high-dimensional input (typically, millions of voxels) to a low-dimensional representation (small number of constructed features) that preserves discriminative signal and is clinically interpretable. We formulate the task as a constrained optimization problem that combines generative and discriminative objectives and show how to extend it to the semisupervised learning (SSL) setting. We propose a novel largescale algorithm to solve the resulting optimization problem. In the fully supervised case, we demonstrate accuracy rates that are better than or comparable to state-of-the-art algorithms on several datasets while producing a representation of the group difference that is consistent with prior clinical reports. Effectiveness of the proposed algorithm for SSL is evaluated with both benchmark and medical imaging datasets. In the benchmark datasets, the results are better than or comparable to the state-of-the-art methods for SSL. For evaluation of the SSL setting in medical datasets, we use images of subjects with Mild Cognitive Impairment (MCI), which is believed to be a precursor to Alzheimer’s disease (AD), as unlabeled data. AD subjects and Normal Control (NC) subjects are used as labeled data, and we try to predict conversion from MCI to AD on follow-up. The semi-supervised extension of this method not only improves the generalization accuracy for the labeled data (AD/NC) slightly but is also able to predict subjects which are likely to converge to AD.

 

Date Posted: 11 July 2012

This document has been peer reviewed.