Penn Engineering

The School of Engineering and Applied Science, established in 1852, is composed of six academic departments and numerous interdisciplinary centers, institutes, and laboratories. At Penn Engineering, we are preparing the next generation of innovative engineers, entrepreneurs and leaders. Our unique culture of cooperation and teamwork, emphasis on research, and dedicated faculty advisors who teach as well as mentor, provide the ideal environment for the intellectual growth and development of well-rounded global citizens.

Search results

Now showing 1 - 10 of 873
  • Publication
    Authoring Multi-Actor Behaviors in Crowds With Diverse Personalities
    (2013-01-01) Kapadia, Mubbasir; Shoulson, Alexander; Durupinar, Funda; Badler, Norman I
    Multi-actor simulation is critical to cinematic content creation, disaster and security simulation, and interactive entertainment. A key challenge is providing an appropriate interface for authoring high-fidelity virtual actors with featurerich control mechanisms capable of complex interactions with the environment and other actors. In this chapter, we present work that addresses the problem of behavior authoring at three levels: Individual and group interactions are conducted in an event-centric manner using parameterized behavior trees, social crowd dynamics are captured using the OCEAN personality model, and a centralized automated planner is used to enforce global narrative constraints on the scale of the entire simulation. We demonstrate the benefits and limitations of each of these approaches and propose the need for a single unifying construct capable of authoring functional, purposeful, autonomous actors which conform to a global narrative in an interactive simulation.
  • Publication
    NGL/LPG Extraction from Marcellus Shale Gas
    (2015-05-04) Champagne, Jocelyn; Ordonez, Freddy; Zhang, Zhiyi
    This process describes a design in which 6 million metric tons per annum of Marcellus Shale Gas is separated into its components through heat exchangers, pressure drops, and, finally, flowing through distillation columns. The goal was essentially to remove all of the methane gas as the overhead product of the heavy removal column and use the subsequent columns to fraction off heavier hydrocarbons. Heat exchangers could not remove sufficient heat from the feed prior to entering the columns and as a result, the overhead product for the heavy removal column consists of 84% by mole of methane and 15% by mole of ethane. Essentially all of the methane is being removed with the overhead product of the HRC but 85% of ethane is being removed here as well. By selling the major product (ethane) and the byproducts (propane and butane), our process design solution yields a net present value of $166.0 million, with an internal rate of return of 32.3%. The high profitability is secured in a sensitivity analysis on the ethane selling price, the total permanent investment, and the total fixed cost.
  • Publication
    Robo4x - Video 9.3a
    (2017-10-02) Koditschek, Daniel
    So let's just remember what the big picture looks like and what we're trying to do. You'll recall from our approach to vertical hoppers, that what we're trying to develop a model of the continuous time vector field and then the continuous time of flow for each of the different contact modes.
  • Publication
    Detailed Microscopic Analysis of Self-interstitial Aggregation in Silicon. II. Thermodynamic Analysis of Single Clusters
    (2010-07-19) Kapur, Sumeet; Nieves, Alex M; Sinno, Talid
    We analyze results generated by large-scale molecular-dynamics simulations of self-interstitial clusters in crystalline silicon using a recently developed computational method for probing the thermodynamics of defects in solids. In this approach, the potential-energy landscape is sampled with lengthy molecular-dynamics simulations and repeated energy minimizations in order to build distribution functions that quantitatively describe the formation thermodynamics of a particular defect cluster. Using this method, a comprehensive picture for interstitial aggregation is proposed. In particular, we find that both vibrational and configuration entropic factors play important roles in determining self-interstitial cluster morphology. In addition to the expected role of temperature, we also find that applied (hydrostatic) pressure and the commensurate lattice strain greatly influence the resulting aggregation pathways. Interestingly, the effect of pressure appears to manifest not by altering the thermodynamics of individual defect configurations but rather by changing the overall energy landscape associated with the defect. These effects appear to be general and are predicted using multiple, well-tested, empirical interatomic potentials for silicon. Our results suggest that internal stress environments within a silicon wafer (e.g., created by ion implantation) could have profound effects on the observed selfinterstitial cluster morphology.
  • Publication
    Cultured Alveolar Epithelial Cells From Septic Rats Mimic in Vivo Septic Lung
    (2010-01-01) Cohen, Taylor Sitarik; Lawrence, Gladys Gray; Margulies, Susan S
    Sepsis results in the formation of pulmonary edema by increasing in epithelial permeability. Therefore we hypothesized that alveolar epithelial cells isolated from septic animals develop tight junctions with different protein composition and reduced barrier function relative to alveolar epithelial cells from healthy animals. Male rats (200–300g) were sacrificed 24 hours after cecal ligation and double puncture (2CLP) or sham surgery. Alveolar epithelial cells were isolated and plated on fibronectin-coated flexible membranes or permeable, non-flexible transwell substrates. After a 5 day culture period, cells were either lysed for western analysis of tight junction protein expressin (claudin 3, 4, 5, 7, 8, and 18, occludin, ZO-1, and JAM-A) and MAPk (JNK, ERK, an p38) signaling activation, or barrier function was examined by measuring transepithelial resistance (TER) or the flux of two molecular tracers (5 and 20 Å). Inhibitors of JNK (SP600125, 20 µM) and ERK (U0126, 10 µM) were used to determine the role of these pathways in sepsis induced epithelial barrier dysfunction. Expression of claudin 4, claudin 18, and occludin was significantly lower, and activation of JNK and ERK signaling pathways was significantly increased in 2CLP monolayers, relative to sham monolayers. Transepithelial resistance of the 2CLP monolayers was reduced significantly compared to sham (769 and 1234 ohm-cm2, respectively), however no significant difference in the flux of either tracer was observed. Inhibition of ERK, not JNK, significantly increased TER and expression of claudin 4 in 2CLP monolayers, and prevented significant differences in claudin 18 expression between 2CLP and sham monolayers. We conclude that alveolar epithelial cells isolated from septic animals form confluent monolayers with impaired barrier function compared to healthy monolayers, and inhibition of ERK signaling partially reverses differences between these monolayers. This model provides a unique preparation for probing the mechanisms by which sepsis alters alveolar epithelium.
  • Publication
    One-particle-thick, Solvent-free, Course-grained Model for Biological and Biomimetic Fluid Membranes
    (2010-07-12) Yuan, Hongyan; Huang, Changjin; Li, Ju; Lykotrafitis, George; Zhang, Sulin
    Biological membranes are involved in numerous intriguing biophysical and biological cellular phenomena of different length scales, ranging from nanoscale raft formation, vesiculation, to microscale shape transformations. With extended length and time scales as compared to atomistic simulations, solvent-free coarse-grained membrane models have been exploited in mesoscopic membrane simulations. In this study, we present a one-particle-thick fluid membrane model, where each particle represents a cluster of lipid molecules. The model features an anisotropic interparticle pair potential with the interaction strength weighed by the relative particle orientations. With the anisotropic pair potential, particles can robustly self-assemble into fluid membranes with experimentally relevant bending rigidity. Despite its simple mathematical form, the model is highly tunable. Three potential parameters separately and effectively control diffusivity, bending rigidity, and spontaneous curvature of the model membrane. As demonstrated by selected examples, our model can naturally simulate dynamics of phase separation in multicomponent membranes and the topological change of fluid vesicles.
  • Publication
    Role and Organization of Transfers in Transit Networks
    (1992) Vuchic, Vukan R; Musso, Antonio
    Passenger transfers among transit lines involve certain "resistance", because they cause some delay and require passenger orientation and walking between vehicles on different lines. Therefore it is sometimes believed that transfers are undesirable and that they should be avoided whenever possible. The fact is, however, that transit networks with many transfer opportunities offer passengers much greater selection of travel paths than networks with disconnected lines which involve no transferring. In addition, the more transferring is performed, the greater is network efficiency, because each line can be designed optimally for its physical conditions, volume and character of demand. Consequently, when transfers are planned correctly, the resistance for passengers can be easily outweighed by the benefits transfers bring with respect to line alignments, schedules and, eventually, in better services offered. Passenger transfers among lines thus represent an important element of transit travel.
  • Publication
    Kelvin-Helmhotz Instability for Parallel Flow in Porous Media: A Linear Theory
    (1982) Bau, Haim H.
    Two fluid layers in fully-saturated porous media are considered. The lighter fluid is above the heavier one so that in the absence of motion the arrangement is stable and the interface is flat. It is shown that when the fluids are moving parallel to each other at different velocities, the interface may become unstable (the Kelvin-Helmholtz instability). The corresponding conditions for marginal stability are derived for Darcian and non-Darcian flows. In both cases, the velocities should exceed some critical values in order for the instability to manifest itself. In the case of Darcy's flow, however, an additional condition, involving the fluids' viscosity and density ratios, is required.
  • Publication
    Hybrid Controllers for Path Planning: A Temporal Logic Approach
    (2005-01-01) Fainekos, Geogios E; Kress-Gazit, Hadas; Pappas, George J
    Robot motion planning algorithms have focused on low-level reachability goals taking into account robot kinematics, or on high level task planning while ignoring low-level dynamics. In this paper, we present an integrated approach to the design of closed–loop hybrid controllers that guarantee by construction that the resulting continuous robot trajectories satisfy sophisticated specifications expressed in the so–called Linear Temporal Logic. In addition, our framework ensures that the temporal logic specification is satisfied even in the presence of an adversary that may instantaneously reposition the robot within the environment a finite number of times. This is achieved by obtaining a Büchi automaton realization of the temporal logic specification, which supervises a finite family of continuous feedback controllers, ensuring consistency between the discrete plan and the continuous execution.
  • Publication
    Robo4x - Video 10.3
    (2017-10-02) Koditschek, Daniel
    The return map analysis is the most important moment in the course. It's the point in the course where all those complicated things that we've been leading up to are going to turn out to be analyzable and they'll be analyzable in a way that gives us really, really important conclusions about the fore-aft motion of the spring loaded inverted pendulum.