Institute for Medicine and Engineering

The mission of the Institute for Medicine and Engineering (IME) is to stimulate fundamental research at the interface between biomedicine and engineering/physical/computational sciences leading to innovative applications in biomedical research and clinical practice. The IME was created in 1996 by the Schools of Medicine (SOM) and Engineering and Applied Science (SEAS) to pursue opportunities for collaborative research. The IME has been successful in obtaining over $80 million in extramural grants, and funded programs. These include a research center in Cell Studies of Pulmonary Artery Hypertension, and a Penn Center for Molecular Discovery.

Membership: The Institute houses 11 core faculty, 6 from the School of Medicine and 5 from SEAS, who were recruited to form the basis for the IME; however, the Institute extends beyond the core group to include 106 members from various schools including School of Medicine, SEAS and Arts and Sciences faculty. The Institute interacts with 24 other Centers or departments.

Multi-disciplinary Research: The IME mission to foster research at the interface of medicine and engineering is met (i) through 8 central investigators who span these disciplines in both schools, (ii) through the core facilities, pilot grant programs, research training, and educational events involving its very wide membership (of 106). The research conducted by central investigators is quite broad, ranging from cell and molecular biology to tissue engineering, biophysics and nanobiology/medicine. Having established a strong basic research foundation the Institute is now expanding translational programs in medicine and engineering.

Strategic Importance: The IME relates directly to 3 major themes of the SOM Research Strategic Plan: Cancer, Neurosciences and Cardiovascular Biology. The University Strategic Plan identifies the link between engineering and medicine as one of the key drivers of success and recommends "fostering advances in engineering, computing, chemistry, mathematics and behavioral sciences that can be applied to life sciences." Because of the multi-disciplinary nature of the Institute, it is well positioned to take advantage of the new NIH roadmap. Because of its unique interface with SEAS, the IME is a strong force in faculty retention by providing unique directions and connections for research among faculty.





Search results

Now showing 1 - 1 of 1
  • Publication
    Mechanisms of Mitochondria–Neurofilament Interactions
    (2003-10-08) Wagner, Oliver I; Janmey, Paul A; Janmey, Paul A; Linden, M.; McIntosh, T. K; Leterrier, Jean-François
    Mitochondria are localized to regions of the cell where ATP consumption is high and are dispersed according to changes in local energy needs. In addition to motion directed by molecular motors, mitochondrial distribution in neuronal cells appears to depend on the docking of mitochondria to microtubules and neurofilaments. We examined interactions between mitochondria and neurofilaments using fluorescence microscopy, dynamic light scattering, atomic force microscopy, and sedimentation assays. Mitochondria-neurofilament interactions depend on mitochondrial membrane potential, as revealed by staining with a membrane potential sensitive dye (JC-1) in the presence of substrates/ADP or uncouplers (valinomycin/carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone) and are affected by the phosphorylation status of neurofilaments and neurofilament sidearms. Antibodies against the neurofilament heavy subunit disrupt binding between mitochondria and neurofilaments, and isolated neurofilament sidearms alone interact with mitochondria, suggesting that they mediate the interactions between the two structures. These data suggest that specific and regulated mitochondrial-neurofilament interactions occur in situ and may contribute to the dynamic distribution of these organelles within the cytoplasm of neurons.