Penn Dental Medicine

Established in 1878, Penn Dental Medicine is among the oldest university-affiliated dental schools in the nation. The school's mission is to transform global oral health and well-being through exceptional clinical care, innovation, education, and research.

Search results

Now showing 1 - 10 of 36
  • Publication
    Hydrogen Sulfide Promotes Tet1- and Tet2-mediated Foxp3 Demethylation to Drive Regulatory T Cell Differentiation and Maintain Immune Homeostasis
    (2015-08-18) Yang, Ruili; Qu, Cunye; Zhou, Yu; Konkel, Joanne; Shi, Shihong; Liu, Yi; Chen, Chider; Liu, Shiyu; Liu, Dawei; Chen, Yibu; Zandi, Ebrahim; Chen, Wanjun; Zhou, Yanheng; Shi, Songtao
    Regulatory T (Treg) cells are essential for maintenance of immune homeostasis. Here we found that hydrogen sulfide (H2S) was required for Foxp3+ Treg cell differentiation and function, and that H2S deficiency led to systemic autoimmune disease. H2S maintained expression of methylcytosine dioxygenases Tet1 and Tet2 by sulfhydrating nuclear transcription factor Y subunit beta (NFYB) to facilitate its binding to Tet1 and Tet2 promoters. Transforming growth factor-β (TGF-β)-activated Smad3 and interleukin-2 (IL-2)-activated Stat5 facilitated Tet1 and Tet2 binding to Foxp3. Tet1 and Tet2 catalyzed conversion of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) in Foxp3 to establish a Treg cell-specific hypomethylation pattern and stable Foxp3 expression. Consequently, Tet1 and Tet2 deletion led to Foxp3 hypermethylation, impaired Treg cell differentiation and function, and autoimmune disease. Thus, H2S promotes Tet1 and Tet2 expression, which are recruited to Foxp3 by TGF-β and IL-2 signaling to maintain Foxp3 demethylation and Treg cell-associated immune homeostasis.
  • Publication
    Cell-based Immunotherapy with Mesenchymal Stem Cells Cures Bisphosphonate-related Osteonecrosis of the Jaw-like Disease in Mice
    (2010-07-01) Kikuiri, Takashi; Kim, Insoo; Yamaza, Takyoshi; Akiyama, Kentaro; Zhang, Qunzhou; Li, Yunsheng; Chen, Chider; Chen, Wanjun; Wang, Songlin; Le, Anh D; Shi, Songtao
    Patients on high-dose bisphosphonate and immunosuppressive therapy have an increased risk of bisphosphonate-related osteonecrosis of the jaw (BRONJ); despite the disease severity, its pathophysiology remains unknown, and appropriate therapy is not established. Here we have developed a mouse model of BRONJ-like disease that recapitulates major clinical and radiographic manifestations of the human disease, including characteristic features of an open alveolar socket, exposed necrotic bone or sequestra, increased inflammatory infiltrates, osseous sclerosis, and radiopaque alveolar bone. We show that administration of zoledronate, a potent aminobisphosphonate, and dexamethasone, an immunosuppressant drug, causes BRONJ-like disease in mice in part by suppressing the adaptive regulatory T cells, Tregs, and activating the inflammatory T-helper-producing interleukin 17 cells, Th17. Most interestingly, we demonstrate that systemic infusion with mesenchymal stem cells (MSCs) prevents and cures BRONJ-like disease possibly via induction of peripheral tolerance, shown as an inhibition of Th17 and increase in Treg cells. The suppressed Tregs/Th17 ratio in zoledronate- and dexamethasone-treated mice is restored in mice undergoing salvage therapy with Tregs. These findings provide evidence of an immunity-based mechanism of BRONJ-like disease and support the rationale for in vivo immunomodulatory therapy using Tregs or MSCs to treat BRONJ. © 2010 American Society for Bone and Mineral Research.
  • Publication
    Regulation of the Stem Cell–Host Immune System Interplay Using Hydrogel Coencapsulation System with an Anti-Inflammatory Drug
    (2015-04-15) Moshaverinia, Alireza; Chen, Chider; Xu, Xingtian; Ansari, Sahar; Zadeh, Homayoun H.; Schricker, Scott R.; Paine, Michael L.; Moradian-Oldak, Janet; Khademhosseini, Ali; Snead, Malcolm L.; Shi, Songtao
    The host immune system is known to influence mesenchymal stem cell (MSC)-mediated bone tissue regeneration. However, the therapeutic capacity of hydrogel biomaterial to modulate the interplay between MSCs and T-lymphocytes is unknown. Here it is shown that encapsulating hydrogel affects this interplay when used to encapsulate MSCs for implantation by hindering the penetration of pro-inflammatory cells and/or cytokines, leading to improved viability of the encapsulated MSCs. This combats the effects of the host pro-inflammatory T-lymphocyte-induced nuclear factor kappaB pathway, which can reduce MSC viability through the CASPASE-3 and CAS-PASE-8 associated proapoptotic cascade, resulting in the apoptosis of MSCs. To corroborate rescue of engrafted MSCs from the insult of the host immune system, the incorporation of the anti-inflammatory drug indomethacin into the encapsulating alginate hydrogel further regulates the local microenvironment and prevents pro-inflammatory cytokine-induced apoptosis. These findings suggest that the encapsulating hydrogel can regulate the MSC-host immune cell interplay and direct the fate of the implanted MSCs, leading to enhanced tissue regeneration.
  • Publication
    The Fas/Fap-1/Cav-1 Complex Regulates IL-1RA Secretion in Mesenchymal Stem Cells to Accelerate Wound Healing
    (2018-03-14) Su, Yingying; Chen, Chider; Guo, Lijia; Du, Juan; Li, Xiaoyan; Liu, Yi
    Mesenchymal stem cells (MSCs) are capable of secreting exosomes, extracellular vesicles, and cytokines to regulate cell and tissue homeostasis. However, it is unknown whether MSCs use a specific exocytotic fusion mechanism to secrete exosomes and cytokines. We show that Fas binds with Fas-associated phosphatase–1 (Fap-1) and caveolin-1 (Cav-1) to activate a common soluble N-ethylmaleimide–sensitive factor (NSF) attachment protein receptor (SNARE)–mediated membrane fusion mechanism to release small extracellular vesicles (sEVs) in MSCs. Moreover, we reveal that MSCs produce and secrete interleukin-1 receptor antagonist (IL-1RA) associated with sEVs to maintain rapid wound healing in the gingiva via the Fas/Fap-1/Cav-1 cascade. Tumor necrosis factor–α (TNF-α) serves as an activator to up-regulate Fas and Fap-1 expression via the nuclear factor κB pathway to promote IL-1RA release. This study identifies a previously unknown Fas/Fap-1/Cav-1 axis that regulates SNARE-mediated sEV and IL-1RA secretion in stem cells, which contributes to accelerated wound healing.
  • Publication
    Muscle Tissue Engineering Using Gingival Mesenchymal Stem Cells Encapsulated in Alginate Hydrogels Containing Multiple Growth Factors
    (2016-06-01) Ansari, Sahar; Chen, Chider; Xu, Xingtian; Annabi, Nasim; Zadeh, Homayoun H.; Wu, Benjamin M.; Khademhosseini, Ali; Moshaverinia, Alireza
    Repair and regeneration of muscle tissue following traumatic injuries or muscle diseases often presents a challenging clinical situation. If a significant amount of tissue is lost the native regenerative potential of skeletal muscle will not be able to grow to fill the defect site completely. Dental-derived mesenchymal stem cells (MSCs) in combination with appropriate scaffold material, present an advantageous alternative therapeutic option for muscle tissue engineering in comparison to current treatment modalities available. To date, there has been no report on application of gingival mesenchymal stem cells (GMSCs) in three-dimensional scaffolds for muscle tissue engineering. The objectives of the current study were to develop an injectable 3D RGD-coupled alginate scaffold with multiple growth factor delivery capacity for encapsulating GMSCs, and to evaluate the capacity of encapsulated GMSCs to differentiate into myogenic tissue in vitro and in vivo where encapsulated GMSCs were transplanted subcutaneously into immunocompromised mice. The results demonstrate that after 4 weeks of differentiation in vitro, GMSCs as well as the positive control human bone marrow mesenchymal stem cells (hBMMSCs) exhibited muscle cell-like morphology with high levels of mRNA expression for gene markers related to muscle regeneration (MyoD, Myf5, and MyoG) via qPCR measurement. Our quantitative PCR analyses revealed that the stiffness of the RGD-coupled alginate regulates the myogenic differentiation of encapsulated GMSCs. Histological and immunohistochemical/fluorescence staining for protein markers specific for myogenic tissue confirmed muscle regeneration in subcutaneous transplantation in our in vivo animal model. GMSCs showed significantly greater capacity for myogenic regeneration in comparison to hBMMSCs (P<0.05). Altogether, our findings confirmed that GMSCs encapsulated in RGD-modified alginate hydrogel with multiple growth factor delivery capacity is a promising candidate for muscle tissue engineering.
  • Publication
    MSC Transplantation Improves Osteopenia via Epigenetic Regulation of Notch Signaling in Lupus
    (2015-10-06) Liu, Shiyu; Liu, Dawei; Chen, Chider; Hamamura, Kazunori; Moshaverinia, Alireza; Yang, Ruili; Liu, Yao; Jin, Yan; Shi, Songtao
    Mesenchymal stem cell transplantation (MSCT) has been used to treat human diseases, but the detailed mechanisms underlying its success are not fully understood. Here we show that MSCT rescues bone marrow MSC (BMMSC) function and ameliorates osteopenia in Fas-deficient-MRL/lpr mice. Mechanistically, we show that Fas deficiency causes failure of miR-29b release, thereby elevating intracellular miR-29b levels, and downregulates DNA methyltransferase 1 (Dnmt1) expression in MRL/lpr BMMSCs. This results in hypomethylation of the Notch1 promoter and activation of Notch signaling, in turn leading to impaired osteogenic differentiation. Furthermore, we show that exosomes, secreted due to MSCT, transfer Fas to recipient MRL/lpr BMMSCs to reduce intracellular levels of miR-29b, which results in recovery of Dnmt1-mediated Notch1 promoter hypomethylation and thereby improves MRL/lpr BMMSC function. Collectively our findings unravel the means by which MSCT rescues MRL/lpr BMMSC function through reuse of donor exosome-provided Fas to regulate the miR-29b/Dnmt1/Notch epigenetic cascade.
  • Publication
    Erratum: Retraction Notice to: Ossifying Fibroma Tumor Stem Cells Are Maintained by Epigenetic Regulation of a TSP1/TGF-β/SMAD3 Autocrine Loop (Cell Stem Cell (2013) 13 (577-589))
    (2015-05-07) Qin, Haiyan; Qu, Cunye; Yamaza, Takayoshi; Yang, Ruili; Lin, Xia; Duan, Xue-Yan; Akiyama, Kentaro; Liu, Yi; Zhang, Qunzhou; Chen, Chider; Chen, yibu; Qi, Hank Heng
  • Publication
    Hydrogel Elasticity and Microarchitecture Regulate Dental-Derived Mesenchymal Stem Cells -Host Immune System Cross-Talk
    (2017-09-15) Ansari, Sahar; Chen, Chider; Hasani-Sarabadi, Mohammad Mahdi; Yu, Bo; Zadeh, Homayoun H.; Wu, Benjamin M.; Moshaverinia, Alireza
    The host immune system (T-lymphocytes and their pro-inflammatory cytokines) has been shown to compromise bone regeneration ability of mesenchymal stem cells (MSCs). We have recently shown that hydrogel, used as an encapsulating biomaterial affects the cross-talk among host immune cells and MSCs. However, the role of hydrogel elasticity and porosity in regulation of cross-talk between dental-derived MSCs and immune cells is unclear. In this study, we demonstrate that the modulus of elasticity and porosity of the scaffold influence T-lymphocyte-dental MSC interplay by regulating the penetration of inflammatory T cells and their cytokines. Moreover, we demonstrated that alginate hydrogels with different elasticity and microporous structure can regulate the viability and determine the fate of the encapsulated MSCs through modulation of NF-kB pathway. Our in vivo data show that alginate hydrogels with smaller pores and higher elasticity could prevent pro-inflammatory cytokine-induced MSC apoptosis by down-regulating the Caspase-3- and 8-associated proapoptotic cascades, leading to higher amounts of ectopic bone regeneration. Additionally, dental-derived MSCs encapsulated in hydrogel with higher elasticity exhibited lower expression levels of NF-kB p65 and Cox-2 in vivo. Taken together, our findings demonstrate that the mechanical characteristics and microarchitecture of the microenvironment encapsulating MSCs, in addition to presence of T-lymphocytes and their pro-inflammatory cytokines, affect the fate of encapsulated dental-derived MSCs.
  • Publication
    Gingival Mesenchymal Stem Cell (GMSC) Delivery System Based on RGD-Coupled Alginate Hydrogel with Antimicrobial Properties: A Novel Treatment Modality for Peri-Implantitis
    (2016-02-01) Diniz, Ivana M. A.; Chen, Chider; Ansari, Sahar; Zadeh, Homayoun H.; Moshaverinia, Maryam; Chee, Daniel; Marques, Márcia M.; Shi, Songtao; Moshaverinia, Alireza
    Purpose Peri-implantitis is one of the most common inflammatory complications in dental implantology. Similar to periodontitis, in peri-implantitis, destructive inflammatory changes take place in the tissues surrounding a dental implant. Bacterial flora at the failing implant sites resemble the pathogens in periodontal disease and consist of Gram-negative anaerobic bacteria including Aggregatibacter actinomycetemcomitans (Aa). Here we demonstrate the effectiveness of a silver lactate (SL)-containing RGD-coupled alginate hydrogel scaffold as a promising stem cell delivery vehicle with antimicrobial properties. Materials and Methods Gingival mesenchymal stem cells (GMSCs) or human bone marrow mesenchymal stem cells (hBMMSCs) were encapsulated in SL-loaded alginate hydrogel microspheres. Stem cell viability, proliferation, and osteo-differentiation capacity were analyzed. Results Our results showed that SL exhibited antimicrobial properties against Aa in a dose-dependent manner, with 0.50 mg/ml showing the greatest antimicrobial properties while still maintaining cell viability. At this concentration, SL-containing alginate hydrogel was able to inhibit Aa on the surface of Ti discs and significantly reduce the bacterial load in Aa suspensions. Silver ions were effectively released from the SL-loaded alginate microspheres for up to 2 weeks. Osteogenic differentiation of GMSCs and hBMMSCs encapsulated in the SL-loaded alginate microspheres were confirmed by the intense mineral matrix deposition and high expression of osteogenesis-related genes. Conclusion Taken together, our findings confirm that GMSCs encapsulated in RGD-modified alginate hydrogel containing SL show promise for bone tissue engineering with antimicrobial properties against Aa bacteria in vitro.
  • Publication
    Dental and Orofacial Mesenchymal Stem Cells in Craniofacial Regeneration: a Prosthodontist’s Point of View
    (2017-10-01) Ansari, Sahar; Seagroves, Jackson T.; Chen, Chider; Shah, Kumar; Aghaloo, Tara; Wu, Benjamin M.; Bencharit, Sompop; Moshaverinia, Alireza
    Of the available regenerative treatment options, craniofacial tissue regeneration using mesenchymal stem cells (MSCs) shows promise. The ability of stem cells to produce multiple specialized cell types along with their extensive distribution in many adult tissues have made them an attractive target for applications in tissue engineering. MSCs reside in a wide spectrum of postnatal tissue types and have been successfully isolated from orofacial tissues. These dental-or orofacial-derived MSCs possess self-renewal and multilineage differentiation capacities. The craniofacial system is composed of complex hard and soft tissues derived from sophisticated processes starting with embryonic development. Because of the complexity of the craniofacial tissues, the application of stem cells presents challenges in terms of the size, shape, and form of the engineered structures, the specialized final developed cells, and the modulation of timely blood supply while limiting inflammatory and immunological responses. The cell delivery vehicle has an important role in the in vivo performance of stem cells and could dictate the success of the regenerative therapy. Among the available hydrogel biomaterials for cell encapsulation, alginate-based hydrogels have shown promising results in biomedical applications. Alginate scaffolds encapsulating MSCs can provide a suitable microenvironment for cell viability and differentiation for tissue regeneration applications. This review aims to summarize current applications of dental-derived stem cell therapy and highlight the use of alginate-based hydrogels for applications in craniofacial tissue engineering.