Penn Dental Medicine
Established in 1878, Penn Dental Medicine is among the oldest university-affiliated dental schools in the nation. The school's mission is to transform global oral health and well-being through exceptional clinical care, innovation, education, and research.
Search results
Mesenchymal Stem Cells Derived From Human Gingiva Are Capable of Immunomodulatory Functions and Ameliorate Inflammation-Related Tissue Destruction in Experimental Colitis (Journal of Immunology (2009) 183, (7787-7798))
2010-02-01, Zhang, Qunzhou, Shi, Hong, Liu, Yi, Uyanne, Jettie, Shi, Yufang, Shi, Songtao, Le, Anh D
Cell-based Immunotherapy with Mesenchymal Stem Cells Cures Bisphosphonate-related Osteonecrosis of the Jaw-like Disease in Mice
2010-07-01, Kikuiri, Takashi, Kim, Insoo, Yamaza, Takyoshi, Akiyama, Kentaro, Zhang, Qunzhou, Li, Yunsheng, Chen, Chider, Chen, Wanjun, Wang, Songlin, Le, Anh D, Shi, Songtao
Patients on high-dose bisphosphonate and immunosuppressive therapy have an increased risk of bisphosphonate-related osteonecrosis of the jaw (BRONJ); despite the disease severity, its pathophysiology remains unknown, and appropriate therapy is not established. Here we have developed a mouse model of BRONJ-like disease that recapitulates major clinical and radiographic manifestations of the human disease, including characteristic features of an open alveolar socket, exposed necrotic bone or sequestra, increased inflammatory infiltrates, osseous sclerosis, and radiopaque alveolar bone. We show that administration of zoledronate, a potent aminobisphosphonate, and dexamethasone, an immunosuppressant drug, causes BRONJ-like disease in mice in part by suppressing the adaptive regulatory T cells, Tregs, and activating the inflammatory T-helper-producing interleukin 17 cells, Th17. Most interestingly, we demonstrate that systemic infusion with mesenchymal stem cells (MSCs) prevents and cures BRONJ-like disease possibly via induction of peripheral tolerance, shown as an inhibition of Th17 and increase in Treg cells. The suppressed Tregs/Th17 ratio in zoledronate- and dexamethasone-treated mice is restored in mice undergoing salvage therapy with Tregs. These findings provide evidence of an immunity-based mechanism of BRONJ-like disease and support the rationale for in vivo immunomodulatory therapy using Tregs or MSCs to treat BRONJ. © 2010 American Society for Bone and Mineral Research.
Human Oral Mucosa and Gingiva: A Unique Reservoir for Mesenchymal Stem Cells
2012-11-01, Zhang, Q Z, Nguyen, A L, Yu, W H, Le, A D
Mesenchymal stem cells (MSCs) represent a heterogeneous population of progenitor cells with self-renewal and multipotent differentiation potential. Aside from their regenerative role, extensive in vitro and in vivo studies have demonstrated that MSCs are capable of potent immunomodulatory effects on a variety of innate and adaptive immune cells. In this article, we will review recent experimental studies on the characterization of a unique population of MSCs derived from human oral mucosa and gingiva, especially their immunomodulatory and anti-inflammatory functions and their application in the treatment of several in vivo models of inflammatory diseases. The ease of isolation, accessible tissue source, and rapid ex vivo expansion, with maintenance of stable stem-cell-like phenotypes, render oral mucosa- and gingiva-derived MSCs a promising alternative cell source for MSC-based therapies. © 2012 International & American Associations for Dental Research.
Mesenchymal Stem Cells Derived from Human Gingiva Are Capable of Immunomodulatory Functions and Ameliorate Inflammation-Related Tissue Destruction in Experimental Colitis
2009-12-15, Zheng, Qunzhou, Shi, Shihong, Liu, Yi, Uyanne, Jettie, Shi, Yufang, Shi, Songtao, Le, Anh D
Aside from the well-established self-renewal and multipotent differentiation properties, mesenchymal stem cells exhibit both immunomodulatory and anti-inflammatory roles in several experimental autoimmune and inflammatory diseases. In this study, we isolated a new population of stem cells from human gingiva, a tissue source easily accessible from the oral cavity, namely, gingiva-derived mesenchymal stem cells (GMSCs), which exhibited clonogenicity, self-renewal, and multipotent differentiation capacities. Most importantly, GMSCs were capable of immunomodulatory functions, specifically suppressed peripheral blood lymphocyte proliferation, induced expression of a wide panel of immunosuppressive factors including IL-10, IDO, inducible NO synthase (iNOS), and cyclooxygenase 2 (COX-2) in response to the inflammatory cytokine, IFN-γ. Cell-based therapy using systemic infusion of GMSCs in experimental colitis significantly ameliorated both clinical and histopathological severity of the colonic inflammation, restored the injured gastrointestinal mucosal tissues, reversed diarrhea and weight loss, and suppressed the overall disease activity in mice. The therapeutic effect of GMSCs was mediated, in part, by the suppression of inflammatory infiltrates and inflammatory cytokines/mediators and the increased infiltration of regulatory T cells and the expression of anti-inflammatory cytokine IL-10 at the colonic sites. Taken together, GMSCs can function as an immunomodulatory and anti-inflammatory component of the immune system in vivo and is a promising cell source for cell-based treatment in experimental inflammatory diseases. Copyright © 2009 by The American Association of Immunologists, Inc.
Neural EGFL Like 1 as a Potential Pro-Chondrogenic, Anti-Inflammatory Dual-Functional Disease-Modifying Osteoarthritis Drug
2020-01-01, Li, Chenshuang, Zheng, Zhong, Ha, Pin, Jiang, Wenlu, Berthiaume, Emily A., Lee, Seungjun, Mills, Zane, Pan, Hsinchuan, Chen, Eric C., Jiang, Jie, Culiat, Cymbaline T., Zhang, Xinli, Ting, Kang, Soo, Chia
Arthritis, an inflammatory condition that causes pain and cartilage destruction in joints, affects over 54.4 million people in the US alone. Here, for the first time, we demonstrated the emerging role of neural EGFL like 1 (NELL-1) in arthritis pathogenesis by showing that Nell-1-haploinsufficient (Nell-1+/6R) mice had accelerated and aggravated osteoarthritis (OA) progression with elevated inflammatory markers in both spontaneous primary OA and chemical-induced secondary OA models. In the chemical-induced OA model, intra-articular injection of interleukin (IL)1β induced more severe inflammation and cartilage degradation in the knee joints of Nell-1+/6R mice than in wildtype animals. Mechanistically, in addition to its pro-chondrogenic potency, NELL-1 also effectively suppressed the expression of inflammatory cytokines and their downstream cartilage catabolic enzymes by upregulating runt-related transcription factor (RUNX)1 in mouse and human articular cartilage chondrocytes. Notably, NELL-1 significantly reduced IL1β-stimulated inflammation and damage to articular cartilage in vivo. In particular, NELL-1 administration markedly reduced the symptoms of antalgic gait observed in IL1β-challenged Nell-1+/6R mice. Therefore, NELL-1 is a promising pro-chondrogenic, anti-inflammatory dual-functional disease-modifying osteoarthritis drug (DMOAD) candidate for preventing and suppressing arthritis-related cartilage damage. © 2019 Elsevier Ltd
Non-exposed Bisphosphonate-related Osteonecrosis of the Jaw: A Critical Assessment of Current Definition, Staging, and Treatment Guidelines
2012-10-01, Patel, S, Choyee, S, Uyanne, J, Nguyen, A L, Lee, P, Sedghizadeh, P P, Kumar, S K S, Lytle, J, Shi, S, Le, A D
Non-exposed bisphosphonate-related osteonecrosis of the jaw (BRONJ) is a newly reported complication arising from bisphosphonate therapy that presents with atypical symptoms and no apparent mucosal fenestration or exposure of necrotic bone. The clinical observation of the presence of necrotic bone underneath normal epithelial coverage was not conclusive for the diagnosis of BRONJ based on current guidelines established by the American Association of Oral and Maxillofacial Surgeons (AAOMS) and the American Society for Bone and Mineral Research (ASBMR), which specify the presence of clinically exposed necrotic bone for more than 8weeks. Hence, the purpose of this review is to critically assess the current guidelines for diagnosis and management of BRONJ and propose a modified staging system and treatment guidelines to properly address the non-exposed variant of BRONJ lesions. © 2012 John Wiley & Sons A/S.
Genes and Pathways Associated with Skeletal Sagittal Malocclusions: A Systematic Review
2021-12-01, Gershater, Elizabeth, Li, Chenshuang, Ha, Pin, Chung, Chun-Hsi, Tanna, Nipul, Zou, Min, Zheng, Zhong
Skeletal class II and III malocclusions are craniofacial disorders that negatively impact people’s quality of life worldwide. Unfortunately, the growth patterns of skeletal malocclusions and their clinical correction prognoses are difficult to predict largely due to lack of knowledge of their precise etiology. Inspired by the strong inheritance pattern of a specific type of skeletal malocclusion, previous genome-wide association studies (GWAS) were reanalyzed, resulting in the identification of 19 skeletal class II malocclusion-associated and 53 skeletal class III malocclusion-associated genes. Functional enrichment of these genes created a signal pathway atlas in which most of the genes were associated with bone and cartilage growth and development, as expected, while some were characterized by functions related to skeletal muscle maturation and construction. Interestingly, several genes and enriched pathways are involved in both skeletal class II and III malocclusions, indicating the key regulatory effects of these genes and pathways in craniofacial development. There is no doubt that further investigation is necessary to validate these recognized genes’ and pathways’ specific function(s) related to maxillary and mandibular development. In summary, this systematic review provides initial insight on developing novel gene-based treatment strategies for skeletal malocclusions and paves the path for precision medicine where dental care providers can make an accurate prediction of the craniofacial growth of an individual patient based on his/her genetic profile. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.
A Novel 3-Dimensional Culture System as an In Vitro Model for Studying Oral Cancer Cell Invasion
2005-12-01, Duong, Hai S, Le, Anh D, Zhang, Qunzhou, Messadi, Diana V
Tissue microenvironment plays a critical role in tumour growth and invasion. This study established a novel 3-dimensional (3-D) cell invasion model for direct microscopic observation of oral cancer cell invasion into the underlying basement membrane and connective tissue stroma. A multilayer cell construct was developed using the OptiCell chamber, consisting of a lower layer of oral mucosa fibroblasts embedded in collagen gel and an overlaying upper layer of oral cancer cells. The two layers are separated by a basement membrane composed of reconstituted extracellular matrix. To verify the applicability of the cell invasion model, multilayer cell constructs of oral squamous cell carcinoma and oral mucosal fibroblasts were exposed to extrinsic urokinase-type plasminogen activator (uPA) or plasminogen activator inhibitor (PAI-1), which are known effectors of cell migration. In addition, the constructs were exposed to both normoxic and hypoxic culture conditions. Microscopic study showed that the presence of uPA enhanced cell invasion, while PAI-1 inhibited cell migration. Western blot and zymographic analysis demonstrated that hypoxia up-regulated uPA and matrix metalloproteinases (MMPs) expression and activity; conversely, PAI-1 level was down-regulated in response to hypoxic challenge as compared to normoxic condition. Our results indicated that the novel 3-D invasion model could serve as an excellent in vitro model to study cancer cell invasion and to test conditions or mediators of cellular migration. © 2005 Blackwell Publishing Ltd.
Experimental Study on the Acellular Demal Matrix Graft for the Root Coverage in Dog
2006-03-01, Cho, Min-Young, Lee, Seoung-Ho, Han, Keum-Ah, Jeon, Hyeran H, Jeon, Hyeran H, Kang, Na-Ra, Kim, Myung-Rae
Mucogingival surgery is a plastic surgical procedure designed to correct defects in the morphology, position, and dimensions of the gingiva surrounding the teeth. Many surgical techniques have been reported in mucogingival surgery. Since these procedures also include the soft tissue esthetic approach, the term "periodontal plastic surgery" has been proposed to be more appropriate.1 Root coverage is a procedure that falls with this definition, and it has attracted more interest than others.
Mechanisms of Hypoxic Regulation of Plasminogen Activator Inhibitor-1 Gene Expression in Keloid Fibroblasts
2003-11-01, Zhang, Qunzhou, Wu, Yidi, Ann, David K., Messadi, Diana V., Tuan, Tai-Lan, Kelly, A. Paul, Bertolami, Charles N., Le, Anh D
Keloids are an excessive accumulation of extracellular matrix. Although numerous studies have shown elevated plasminogen activator inhibitor-1 (PAI-1) levels in keloid fibroblasts compared with those of normal skin. Their specific mechanisms involved in the differential expression of PAI-1 in these cell types. In this study, the upregulation of PAI-1 expression is demonstrated in keloid tissues and their derived dermal fibroblasts, attesting to the persistence, if any, of fundamental differences between in vivo and in vitro paradigms. We further examined the mechanisms involved in hypoxia-induced regulation of PAI-1 gene in dermal fibroblast derived from keloid lesions and associated clinically normal peripheral skins from the same patient. Primary cultures were exposed to an environmental hypoxia or desferroxamine. We found that the hypoxia-induced elevation of PAI-1 gene appears to be regulated at both transcriptional and post-transcriptional levels in keloid fibroblasts. Furthermore, our results showed a consistent elevation of HIF-1α protein level in keloid tissues compared with their normal peripheral skin controls, implying a potential role as a biomarker for local skin hypoxia. Treatment with antisense oligonucleotides against hypoxia-inducible factor 1α (HIF-1α) led to the downregulation of steady-state levels of PAI-1 mRNA under both normoxic and hypoxic conditions. Conceivably, our results suggest that HIF-1α may be a novel therapeutic target to modulate the scar fibrosis process.