
Departmental Papers (ESE)
Abstract
Simple mathematical models or ‘templates’ of locomotion have been effective tools in understanding how animals move and have inspired and guided the design of robots that emulate those behaviors. This paper describes a recently proposed biologically-based template for dynamic vertical climbing, and evaluates the feasibility of adapting it to build a vertical ‘running’ robot.
We present the results a simulation study suggesting that appropriate mechanical and control alterations to the template result in fast stable climbing that preserves the characteristic body motions and foot forces found in the template model and in animals. These design changes should also allow the robot to operate with commercially available actuators and in the same power to weight range as other running and climbing robots.
Document Type
Working Paper
Subject Area
GRASP, Kodlab
Date of this Version
9-2006
Date Posted: 04 August 2009
Comments
Proceedings of the 9th International Conference on Climbing and Walking Robots, Brussels, Belgium, Sep. 2006.