Departmental Papers (ESE)


This paper describes some initial steps toward the development of more natural control strategies for free motion of robot arms. The standard lumped parameter dynamical model of an open kinematic chain is shown to be stabilizable by linear feedback, after nonlinear gravitational terms have been cancelled. A new control algorithm is proposed and is shown to drive robot joint positions and velocities asymptotically toward arbitrary time-varying reference trajectories.

Document Type

Conference Paper

Subject Area

GRASP, Kodlab

Date of this Version

December 1984


Copyright 1984 IEEE. Reprinted from Proceedings of the 23rd IEEE Conference on Decision and Control, 1984., Volume 1, pages 733-735.

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of the University of Pennsylvania's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

NOTE: At the time of publication, author Daniel Koditschek was affiliated with Yale University. Currently, he is a faculty member in the Department of Electrical and Systems Engineering at the University of Pennsylvania.



Date Posted: 11 July 2008

This document has been peer reviewed.