Departmental Papers (ESE)

Abstract

The detailed theory of a single subwavelength conformal radiator that exploits the resonant properties of thin cylindrical metamaterial shells supporting leaky waves is presented. It is shown and reviewed analytically and numerically how a circularly symmetric resonant leaky mode may be supported by a properly designed subwavelength homogenous cylindrical shell of low negative permittivity. Some physical insights are provided and numerical simulations with a feed point, considering also the finiteness of the antenna in the longitudinal direction, are presented and discussed. Moreover, possibilities and limitations of a practical realization of this setup are mentioned, considering in details the possible anisotropies in the metamaterials.

Document Type

Journal Article

Date of this Version

6-1-2007

Comments

Copyright 2007 IEEE. Reprinted from IEEE Transactions on Antennas and Propagation, Volume 55, Issue 6, June 2007, pages 1698-1708.

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of the University of Pennsylvania's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

Keywords

conformal antennas, cylindrical antennas, leaky waves, metamaterials

Share

COinS
 

Date Posted: 19 August 2007

This document has been peer reviewed.