Departmental Papers (ESE)

Abstract

Through experimental investigation, a thin subwavelength cavity resonator was physically realized using a bilayer structure composed of air and a negative permeability metamaterial structure one unit cell in thickness. We designed and built the metamaterial slab with periodic metallic ring structures and measured the spatial electric field magnitude in a cavity formed from this slab and a region of air, showing that a subwavelength cavity can be realized. The measured electric field magnitude distribution in the cavity matched very well with effective medium theory, showing that even a slab one unit cell in thickness may be effectively equivalent to a thin homogeneous medium as far as the construction of a sub-wavelength cavity is concerned, provided that the unit cell size is significantly smaller than the free space wavelength.

Document Type

Journal Article

Date of this Version

June 2007

Comments

Copyright 2007 IEEE. Reprinted from IEEE Transactions on Antennas and Propagation, Volume 55, Issue 6, June 2007, pages 1781-1788.

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of the University of Pennsylvania's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

Keywords

cavity resonator, metamaterials, microwave cavities, negative index of refraction, negative permeability

Share

COinS
 

Date Posted: 19 August 2007

This document has been peer reviewed.