Languages of Nested Trees
Penn collection
Degree type
Discipline
Subject
Funder
Grant number
License
Copyright date
Distributor
Related resources
Author
Contributor
Abstract
We study languages of nested trees—structures obtained by augmenting trees with sets of nested jump-edges. These graphs can naturally model branching behaviors of pushdown programs, so that the problem of branching-time software model checking may be phrased as a membership question for such languages. We define finite-state automata accepting such languages—these automata can pass states along jump-edges as well as tree edges. We find that the model-checking problem for these automata on pushdown systems is EXPTIME-complete, and that their alternating versions are expressively equivalent to NT-μ, a recently proposed temporal logic for nested trees that can express a variety of branching-time, "context-free" requirements. We also show that monadic second order logic (MSO) cannot exploit the structure: MSO on nested trees is too strong in the sense that it has an undecidable model checking problem, and seems too weak to capture NT-μ.