Coffee Rings and Coffee Disks: Physics on the Edge
Penn collection
Degree type
Discipline
Subject
Physics
Funder
Grant number
License
Copyright date
Distributor
Related resources
Author
Contributor
Abstract
As many a coffee drinker knows, a drying drop of coffee typically leaves behind a ring-shaped stain of small grounds. Though the phenomenon is common, the mechanisms that drive it are rich with physics. As first elucidated by Robert Deegan and colleagues in 1997, the coffee ring results from radially outward fluid flows induced by so-called contact line pinning: The outer edge of a spilled coffee droplet grabs onto rough spots on the solid surface and becomes pinned in place. The evaporating drop thus retains its pinned diameter and flattens while it dries. That flattening, in turn, is accompanied by fluid flowing from the middle of the drop toward its edge to replenish evaporating water. Suspended particles—the coffee grounds—are carried to the edge of the drop by that flow. Once there, they pile up, one at a time, into a tightly jammed packing and produce the coffee ring. Deegan and company studied the ring growth empirically by following the individual frames in a video of plastic colloidal spheres suspended in an evaporating droplet.