Theoretical Analysis of the Double-q Magnetic Structure of CeAl2
Penn collection
Degree type
Discipline
Subject
Physics
Funder
Grant number
License
Copyright date
Distributor
Related resources
Author
Contributor
Abstract
A model involving competing short-range isotropic Heisenberg interactions is developed to explain the double-q magnetic structure of CeAl2Θ. For suitably chosen interactions, terms in the Landau expansion quadratic in the order parameters explain the condensation of incommensurate order at wave vectors in the star of (1/2− δ,1/2+δ,1/2)(2π/a), where a is the cubic lattice constant. We show that the fourth-order terms in the Landau expansion lead to the formation of the so-called double-q magnetic structure in which long-range order develops simultaneously at two symmetry-related wave vectors, in striking agreement with the magnetic structure determinations. Based on the value of the ordering temperature and of the Curie-Weiss temperature Θ of the susceptibility, we estimate that the nearest-neighbor interaction K0 is ferromagnetic with K0/k=−11±1 K and the next-nearest neighbor interaction J is antiferromagnetic with J/k=6±2 K. We also briefly comment on the analogous phenomena seen in the similar system TmS.