Magnetic microposts as an approach to apply forces to living cells

Loading...
Thumbnail Image
Penn collection
Departmental Papers (BE)
Degree type
Discipline
Subject
focal adhesions
magnetic nanowires
mechanotransduction
microfabrication
traction forces
Funder
Grant number
License
Copyright date
Distributor
Related resources
Author
Sniadecki, Nathan J
Anguelouch, Alexandre
Yang, Michael T
Lamb, Corinne M
Liu, Zhijun
Kirschner, Stuart B
Liu, Yaohua
Reich, Daniel H
Contributor
Abstract

Cells respond to mechanical forces whether applied externally or generated internally via the cytoskeleton. To study the cellular response to forces separately, we applied external forces to cells via microfabricated magnetic posts containing cobalt nanowires interspersed among an array of elastomeric posts, which acted as independent sensors to cellular traction forces. A magnetic field induced torque in the nanowires, which deflected the magnetic posts and imparted force to individual adhesions of cells attached to the array. Using this system, we examined the cellular reaction to applied forces and found that applying a step force led to an increase in local focal adhesion size at the site of application but not at nearby nonmagnetic posts. Focal adhesion recruitment was enhanced further when cells were subjected to multiple force actuations within the same time interval. Recording the traction forces in response to such force stimulation revealed two responses: a sudden loss in contractility that occurred within the first minute of stimulation or a gradual decay in contractility over several minutes. For both types of responses, the subcellular distribution of loss in traction forces was not confined to locations near the actuated micropost, nor uniformly across the whole cell, but instead occurred at discrete locations along the cell periphery. Together, these data reveal an important dynamic biological relationship between external and internal forces and demonstrate the utility of this microfabricated system to explore this interaction. Supporting materials: http://www.pnas.org/cgi/content/full/0611613104/DC1

Advisor
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Publication date
2007-07-14
Journal title
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
© 2007 by The National Academy of Sciences of the USA. Reprinted from PNAS 2007, Volume 104, July 2007, pages 14553-14558. Publisher URL: http://www.pnas.org/cgi/content/full/0611613104/DC1
Recommended citation
Collection