Viral Information

Loading...
Thumbnail Image
Penn collection
Departmental Papers (Biology)
Degree type
Discipline
Subject
virus
phage
information
ecology
evolution
Biodiversity
Biology
Ecology and Evolutionary Biology
Virology
Funder
Grant number
License
Copyright date
Distributor
Related resources
Author
Rohwer, Forest
Contributor
Abstract

Viruses are major drivers of global biochemistry and the etiological agents of many diseases. They are also the winners in the game of life: there are more viruses on the planet than cellular organisms and they encode most of the genetic diversity on the planet. In fact, it is reasonable to view life as a viral incubator. Nevertheless, most ecological and evolutionary theories were developed, and continue to be developed, without considering the virosphere. This means these theories need to be reinterpreted in light of viral knowledge or we need to develop new theory from the viral point-of-view. Here we briefly introduce our viral planet and then address a major outstanding question in biology: why is most of life viral? A key insight is that during an infection cycle the original virus is completely broken down and only the associated information is passed on to the next generation. This is different for cellular organisms, which must pass on some physical part of themselves from generation to generation. Based on this premise, it is proposed that the thermodynamic consequences of physical information (e.g. Landauer's principle) are observed in natural viral populations. This link between physical and genetic information is then used to develop the Viral Information Hypothesis, which states that genetic information replicates itself to the detriment of system energy efficiency (i.e., is viral in nature). Finally, we show how viral information can be tested, and illustrate how this novel view can explain existing ecological and evolutionary theories from more fundamental principles.

Advisor
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Publication date
2013-03-01
Journal title
Biology & Philosophy
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
Recommended citation
Collection