Estimation and Confidence Sets for Sparse Normal Mixtures

Loading...
Thumbnail Image
Penn collection
Statistics Papers
Degree type
Discipline
Subject
confidence lower bound
estimating fraction
higher criticism
minimax estimation
optimally adaptive
sparse normal mixture
Statistics and Probability
Funder
Grant number
License
Copyright date
Distributor
Related resources
Author
Cai, T. Tony
Jin, Jiashun
Low, Mark G
Contributor
Abstract

For high dimensional statistical models, researchers have begun to focus on situations which can be described as having relatively few moderately large coefficients. Such situations lead to some very subtle statistical problems. In particular, Ingster and Donoho and Jin have considered a sparse normal means testing problem, in which they described the precise demarcation or detection boundary. Meinshausen and Rice have shown that it is even possible to estimate consistently the fraction of nonzero coordinates on a subset of the detectable region, but leave unanswered the question of exactly in which parts of the detectable region consistent estimation is possible. In the present paper we develop a new approach for estimating the fraction of nonzero means for problems where the nonzero means are moderately large. We show that the detection region described by Ingster and Donoho and Jin turns out to be the region where it is possible to consistently estimate the expected fraction of nonzero coordinates. This theory is developed further and minimax rates of convergence are derived. A procedure is constructed which attains the optimal rate of convergence in this setting. Furthermore, the procedure also provides an honest lower bound for confidence intervals while minimizing the expected length of such an interval. Simulations are used to enable comparison with the work of Meinshausen and Rice, where a procedure is given but where rates of convergence have not been discussed. Extensions to more general Gaussian mixture models are also given.

Advisor
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Publication date
2007-01-01
Journal title
The Annals of Statistics
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
Recommended citation
Collection