Interval Estimation for a Binomial Proportion

Loading...
Thumbnail Image
Penn collection
Statistics Papers
Degree type
Discipline
Subject
Bayes
binomial distribution
confidence intervals
coverage probability
Edgeworth expansion
expected length
Jeffreys prior
normal approximation
posterior
Statistics and Probability
Funder
Grant number
License
Copyright date
Distributor
Related resources
Author
Brown, Lawrence D
Cai, T. Tony
Dasgupta, Anirban
Contributor
Abstract

We revisit the problem of interval estimation of a binomial proportion. The erratic behavior of the coverage probability of the standard Wald confidence interval has previously been remarked on in the literature (Blyth and Still, Agresti and Coull, Santner and others). We begin by showing that the chaotic coverage properties of the Wald interval are far more persistent than is appreciated. Furthermore, common textbook prescriptions regarding its safety are misleading and defective in several respects and cannot be trusted. This leads us to consideration of alternative intervals. A number of natural alternatives are presented, each with its motivation and context. Each interval is examined for its coverage probability and its length. Based on this analysis, we recommend the Wilson interval or the equal-tailed Jeffreys prior interval for small n and the interval suggested in Agresti and Coull for larger n. We also provide an additional frequentist justification for use of the Jeffreys interval.

Advisor
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Publication date
2001-01-01
Journal title
Statistical Science
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
Recommended citation
Collection