Effects of Particle Shape on Growth Dynamics at Edges of Evaporating Drops of Colloidal Suspensions

Loading...
Thumbnail Image
Penn collection
Department of Physics Papers
Degree type
Discipline
Subject
Physical Sciences and Mathematics
Physics
Funder
Grant number
License
Copyright date
Distributor
Related resources
Author
Yunker, Peter J
Lohr, Matthew A
Still, Tim
Borodin, Alexei
Contributor
Abstract

We study the influence of particle shape on growth processes at the edges of evaporating drops. Aqueous suspensions of colloidal particles evaporate on glass slides, and convective flows during evaporation carry particles from drop center to drop edge, where they accumulate. The resulting particle deposits grow inhomogeneously from the edge in two dimensions, and the deposition front, or growth line, varies spatiotemporally. Measurements of the fluctuations of the deposition front during evaporation enable us to identify distinct growth processes that depend strongly on particle shape. Sphere deposition exhibits a classic Poisson-like growth process; deposition of slightly anisotropic particles, however, belongs to the Kardar-Parisi-Zhang universality class, and deposition of highly anisotropic ellipsoids appears to belong to a third universality class, characterized by Kardar-Parisi-Zhang fluctuations in the presence of quenched disorder.

Advisor
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Publication date
2013-01-18
Journal title
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
Peter J. Yunker, Matthew A. Lohr, Tim Still, Alexei Borodin, D. J. Durian, and A. G. Yodh. (2013). Effects of Particle Shape on Growth Dynamics at Edges of Evaporating Drops of Colloidal Suspensions. Physical Review Letters, 110(3), 035501. doi: http://dx.doi.org/10.1103/PhysRevLett.110.035501 © 2013 American Physical Society
Recommended citation
Collection