Solution mediated effect of bioactive glass in poly (lactic-co-glycolic acid)-bioactive glass composites on osteogenesis of marrow stromal cells
Penn collection
Degree type
Discipline
Subject
bioactive glass
calcium phosphate
marrow stromal cells
osteogenesis
Funder
Grant number
License
Copyright date
Distributor
Related resources
Author
Contributor
Abstract
A previous study demonstrated that the incorporation of bioactive glass (BG) into poly (lactic-co-glycolic acid) (PLGA) can promote the osteoblastic differentiation of marrow stromal cells (MSC) on PLGA by promote the formation of a calcium phosphate rich layer on its surface. To further understand the mechanisms underlying the osteogenic effect of PLGA-BG composite scaffolds, we tested whether solution-mediated factors derived from composite scaffolds/hybrids can promote osteogenesis of marrow stromal cells. The dissolution product from PLGA-30%BG scaffold stimulated osteogenesis of MSC, as was confirmed by increased mRNA expression of osteoblastic markers such as osteocalcin (OCN), alkaline phosphatase (ALP), and bone sialoprotein (BSP). The three-dimensional structure of the scaffolds may contribute to the production of cell derived factors which promoted distant MSC differentiation. Thus PLGABG composites demonstrates significant potential as a bone replacement material.