Coarse-Grained Lattice Monte Carlo Simulations with Continuous Interaction Potentials
Penn collection
Degree type
Discipline
Subject
Funder
Grant number
License
Copyright date
Distributor
Related resources
Author
Contributor
Abstract
A coarse-grained lattice Metropolis Monte Carlo (CG-MMC) method is presented for simulating fluid systems described by standard molecular force fields. First, a thermodynamically consistent coarse-grained interaction potential is obtained numerically and automatically from a continuous force field such as Lennard-Jones. The coarse-grained potential then is used to driveCG-MMC simulations of vapor-liquid equilibrium in Lennard-Jones, square-well, and simple point chargewater systems. The CG-MMC predicts vapor-liquid phase envelopes, as well as the particle density distributions in both the liquid and vapor phases, in excellent agreement with full-resolution Monte Carlo simulations, at a fraction of the computational cost.