Blackboard System Generator (BSG): An Alternative Distributed Problem-Solving Paradigm

Loading...
Thumbnail Image
Penn collection
Departmental Papers (ESE)
Degree type
Discipline
Subject
Funder
Grant number
License
Copyright date
Distributor
Related resources
Author
Chang, Joseph S
Feggos, Kostas
Contributor
Abstract

The classical blackboard model employs a number of relaxations of team decision theory that are commonly organized into three panels of AI heuristics, including: 1) a shared information panel that offers a capability for ensuring agent knowledge sharing, 2) a contract formalism for the agent and event scheduling, coordinating, and control panel, and 3) a blackboard panel for metalevel planning and guidance that offers whole situation recognition, top down reasoning, and adaptive learning. The nature and implications of these relaxations are explained in terms of the blackboard system generator (BSG) and via comparisons to what is done in other blackboard shells. Particular attention is paid to theoretical relaxations inherent in the classical blackboard model and to research opportunities arising as a result. Progress made to date to counteract adverse effects of some of these relaxations is described in terms of a project management/work breakdown paradigm adopted in BSG that: 1) alleviates the knowledge engineering bottlenecks of traditional blackboards and that provides BSG with a semantic rather than just syntactic understanding of blackboard control and scheduling; 2) allows a distributed problem-solving capability for connecting agents at virtual addresses on a logical network and that permits concurrent processing on any machine available on the network; 3) establishes an open architecture that includes techniques for integrating preexisting agent methods (e.g., expert systems, procedures, or data bases) while laying the foundation for assessing the impact of “black boxes” on the global and local objective functions; and 4) utilizes project management techniques for team agents planning as well as an analogical reasoner subsystem for BSG metaplanning and generic controlled learning. This latter item is supported by a connectionist scheme for its associative memory. The techniques of each of the three panels and of the four sets of paradigm-related advances are described along with selected results from classroom teaching experiments and from three applications using BSG to date.

Advisor
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Publication date
1989-03-01
Journal title
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
Recommended citation
Collection