Conditional Hardness for Approximate Coloring
Penn collection
Degree type
Discipline
Subject
unique games
graph coloring
Computer Sciences
Statistics and Probability
Funder
Grant number
License
Copyright date
Distributor
Related resources
Author
Contributor
Abstract
We study the AprxColoring(q,Q) problem: Given a graph G, decide whether Χ(G) ≤ q or Χ(G)≥Q. We present hardness results for this problem for any constants 3 ≤ q < Q. For q ≥ 4, our result is base on Khot's 2-to-1 label cover, which is conjectured to be NP-hard [S. Khot, Proceedings of the 34th Annual ACM Symposium on Theory of Computing, 2002, pp. 767–775]. For q=3, we base our hardness result on a certain “⋉-shaped" variant of his conjecture. Previously no hardness result was known for q = 3 and Q ≥ 6. At the heart of our proof are tight bounds on generalized noise-stability quantities, which extend the recent work of Mossel, O'Donnell, and Oleszkiewicz ["Noise stability of functions with low influences: Invariance and optimality," Ann. of Math. (2), to appear] and should have wider applicability.