Weighted False Discovery Rate Control in Large-Scale Multiple Testing
Files
Penn collection
Degree type
Discipline
Subject
Decision weights
Multiple testing with groups
Prioritized subsets
Value to cost ratio
Weighted p-value
Business
Statistics and Probability
Funder
Grant number
License
Copyright date
Distributor
Related resources
Author
Contributor
Abstract
The use of weights provides an effective strategy to incorporate prior domain knowledge in large-scale inference. This paper studies weighted multiple testing in a decisiontheoretic framework. We develop oracle and data-driven procedures that aim to maximize the expected number of true positives subject to a constraint on the weighted false discovery rate. The asymptotic validity and optimality of the proposed methods are established. The results demonstrate that incorporating informative domain knowledge enhances the interpretability of results and precision of inference. Simulation studies show that the proposed method controls the error rate at the nominal level, and the gain in power over existing methods is substantial in many settings. An application to genome-wide association study is discussed.