Software Language Comprehension using a Program-Derived Semantics Graph

dc.contributor.authorIyer, Roshni G
dc.contributor.authorSun, Yizhou
dc.contributor.authorGottschlich, Justin E
dc.contributor.authorGottschlich, Justin E
dc.date2023-05-18T00:14:18.000
dc.date.accessioned2023-05-22T13:06:46Z
dc.date.available2023-05-22T13:06:46Z
dc.date.issued2020-01-01
dc.date.submitted2020-12-18T13:01:46-08:00
dc.description.abstractTraditional code transformation structures, such as abstract syntax trees (ASTs), conteXtual flow graphs (XFGs), and more generally, compiler intermediate representations (IRs), may have limitations in extracting higher-order semantics from code. While work has already begun on higher-order semantics lifting (e.g., Aroma’s simplified parse tree (SPT), verified lifting’s lambda calculi, and Halide’s intentional domain specific language (DSL)), research in this area is still immature. To continue to advance this research, we present the program-derived semantics graph (PSG), a new graphical structure to capture semantics of code. The PSG is designed to provide a single structure for capturing program semantics at multiple levels of abstraction. The PSG may be in a class of emerging structural representations that cannot be built from a traditional set of predefined rules and instead must be learned. In this paper, we describe the PSG and its fundamental structural differences compared to state-of-the-art structures. Although our exploration into the PSG is in its infancy, our early results and architectural analysis indicate it is a promising new research direction to automatically extract program semantics.
dc.identifier.urihttps://repository.upenn.edu/handle/20.500.14332/8489
dc.legacy.articleid1002
dc.legacy.fulltexturlhttps://repository.upenn.edu/cgi/viewcontent.cgi?article=1002&context=cps_machine_programming&unstamped=1
dc.source.issue3
dc.source.journalMachine Programming
dc.source.statuspublished
dc.titleSoftware Language Comprehension using a Program-Derived Semantics Graph
dc.typePresentation
digcom.contributor.authorIyer, Roshni G
digcom.contributor.authorSun, Yizhou
digcom.contributor.authorWang, Wei
digcom.contributor.authorisAuthorOfPublication|email:gojustin@cis.upenn.edu|institution:Intel|Gottschlich, Justin E
digcom.identifiercps_machine_programming/3
digcom.identifier.contextkey20688751
digcom.identifier.submissionpathcps_machine_programming/3
digcom.typeconference
dspace.entity.typePublication
relation.isAuthorOfPublication5cbcf403-a558-4c1c-aa8a-d700e3d50679
relation.isAuthorOfPublication5cbcf403-a558-4c1c-aa8a-d700e3d50679
relation.isAuthorOfPublication.latestForDiscovery5cbcf403-a558-4c1c-aa8a-d700e3d50679
upenn.schoolDepartmentCenterMachine Programming
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2004.00768.pdf
Size:
3.86 MB
Format:
Adobe Portable Document Format
Collection