Entropic Origins of Stability in Silicon Interstitial Clusters
Penn collection
Degree type
Discipline
Subject
Engineering
Funder
Grant number
License
Copyright date
Distributor
Related resources
Contributor
Abstract
The role of entropy in the thermodynamic properties of small interstitial clusters in crystalline silicon is investigated using an empirical potential. It is shown that both vibrational and configurational entropies are potentially important in setting the properties of small silicon interstitial clusters and, in particular, contribute to the formation of “magic” sizes that exhibit special stability, which have been inferred by experimental measurements of dopant diffusion. The results suggest that a competition between formation energy and entropy of small clusters could be linked to the selection process between various self-interstitial precipitate morphologies observed in ion-implanted crystalline silicon.