Multiple Random Oracles Are Better Than One
Penn collection
Degree type
Discipline
Subject
PAC learning
biased product distributions
Fourier analysis of Boolean functions
Russo’s formula
Other Statistics and Probability
Statistics and Probability
Funder
Grant number
License
Copyright date
Distributor
Related resources
Author
Contributor
Abstract
We study the problem of learning k-juntas given access to examples drawn from a number of different product distributions. Thus we wish to learn a function f: {−1, 1}n → {−1, 1} that depends on k (unknown) coordinates. While the best-known algorithms for the general problem of learning a k-junta require running times of nk poly(n, 2k), we show that, given access to k different product distributions with biases separated by γ > 0, the functions may be learned in time poly(n, 2k, γ−k). More generally, given access to t ≤ k different product distributions, the functions may be learned in time nk/tpoly(n, 2k, γ−k). Our techniques involve novel results in Fourier analysis, relating Fourier expansions with respect to different biases, and a generalization of Russo's formula.