Recursive Reconstruction on Periodic Trees

Loading...
Thumbnail Image
Penn collection
Statistics Papers
Degree type
Discipline
Subject
Statistics and Probability
Funder
Grant number
License
Copyright date
Distributor
Related resources
Author
Mossel, Elchanan
Contributor
Abstract

A periodic tree Tn consists of full n-level copies of a finite tree T. The tree Tn is labeled by random bits. The root label is chosen randomly, and the probability of two adjacent vertices to have the same label is 1−ϵ. This model simulates noisy propagation of a bit from the root, and has significance both in communication theory and in biology. Our aim is to find an algorithm which decides for every set of values of the boundary bits of T, if the root is more probable to be 0 or 1. We want to use this algorithm recursively to reconstruct the value of the root of Tn with a probability bounded away from ½ for all n. In this paper we find for all T, the values of ϵ for which such a reconstruction is possible. We then compare the ϵ values for recursive and nonrecursive algorithms. Finally, we discuss some problems concerning generalizations of this model.

Advisor
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Publication date
1998-08-01
Journal title
Random Structures & Algorithms
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
Recommended citation
Collection