SpinWaves in the Frustrated Kagomé Lattice Antiferromagnet KFe3(OH)6(SO4)2
Loading...
Penn collection
Department of Physics Papers
Degree type
Discipline
Subject
Physical Sciences and Mathematics
Physics
Physics
Funder
Grant number
License
Copyright date
Distributor
Related resources
Author
Matan, Kittiwit
Grohol, Daniel
Nocera, Daniel G.
Lee, Seunghun H.
Nagler, Stephen E.
Lee, Young S
Contributor
Abstract
The spin wave excitations of the S = 5/2 kagomé lattice antiferromagnet KFe3(OH)6(SO4)2 have been measured using high-resolution inelastic neutron scattering. We directly observe a flat mode which corresponds to a lifted ‘‘zero energy mode,’’ verifying a fundamental prediction for the kagomé lattice. A simple Heisenberg spin Hamiltonian provides an excellent fit to our spin wave data. The antisymmetric Dzyaloshinskii-Moriya interaction is the primary source of anisotropy and explains the low-temperature magnetization and spin structure.
Advisor
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Publication date
2006-06-19
Journal title
Volume number
Issue number
Publisher
Publisher DOI
Comments
Suggested Citation: Matan, K. et al. (2006). SpinWaves in the Frustrated Kagomé Lattice Antiferromagnet KFe3(OH)6(SO4)2. Physical Review Letters 96, 247201. © 2006 American Physical Society http://dx.doi.org/10.1103/PhysRevLett.96.247201