Multiplicative Updates for Nonnegative Quadratic Programming

Loading...
Thumbnail Image
Penn collection
Departmental Papers (ESE)
General Robotics, Automation, Sensing and Perception Laboratory
Degree type
Discipline
Subject
GRASP
Medicine and Health Sciences
Funder
Grant number
License
Copyright date
Distributor
Related resources
Author
Sha, Fei
Saul, Lawrence K.
Contributor
Abstract

Many problems in neural computation and statistical learning involve optimizations with nonnegativity constraints. In this article, we study convex problems in quadratic programming where the optimization is confined to an axis-aligned region in the nonnegative orthant. For these problems, we derive multiplicative updates that improve the value of the objective function at each iteration and converge monotonically to the global minimum. The updates have a simple closed form and do not involve any heuristics or free parameters that must be tuned to ensure convergence. Despite their simplicity, they differ strikingly in form from other multiplicative updates used in machine learning.We provide complete proofs of convergence for these updates and describe their application to problems in signal processing and pattern recognition.

Advisor
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Publication date
2007-01-01
Journal title
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
Suggested Citation: Sha, F., Lin, Y., Saul, L.K. and Lee, D.D. (2007). Multiplicative Updates for Nonnegative Quadratic Programming. Neural Computation. 19, 2004-2031. © 2007 MIT Press http://www.mitpressjournals.org/loi/neco
Recommended citation
Collection