Substrate Compliance versus Ligand Density in Cell on Gel Responses

Loading...
Thumbnail Image
Penn collection
Departmental Papers (CBE)
Degree type
Discipline
Subject
Funder
Grant number
License
Copyright date
Distributor
Related resources
Author
Bacakova, Lucie
Newman, Cynthia
Hategan, Alina
Griffin, Maureen
Contributor
Abstract

Substrate stiffness is emerging as an important physical factor in the response of many cell types. In agreement with findings on other anchorage-dependent cell lineages, aortic smooth muscle cells are found to spread and organize their cytoskeleton and focal adhesions much more so on "rigid" glass or "stiff" gels than on "soft" gels. Whereas these cells generally show maximal spreading on intermediate collagen densities, the limited spreading on soft gels is surprisingly insensitive to adhesive ligand density. Bell-shaped cell spreading curves encompassing all substrates are modeled by simple functions that couple ligand density to substrate stiffness. Although smooth muscle cells spread minimally on soft gels regardless of collagen, GFP-actin gives a slight overexpression of total actin that can override the soft gel response and drive spreading; GFP and GFP-paxillin do not have the same effect. The GFP-actin cells invariably show an organized filamentous cytoskeleton and clearly indicate that the cytoskeleton is at least one structural node in a signaling network that can override spreading limits typically dictated by soft gels. Based on such results, we hypothesize a central structural role for the cytoskeleton in driving the membrane outward during spreading whereas adhesion reinforces the spreading.

Advisor
Date Range for Data Collection (Start Date)
Date Range for Data Collection (End Date)
Digital Object Identifier
Series name and number
Publication date
2004-01-01
Journal title
Volume number
Issue number
Publisher
Publisher DOI
Journal Issue
Comments
Reprinted from Biophysical Journal, Volume 86, Issue 1, January 2004, pages 617-628. Publisher URL: http://www.biophysj.org/cgi/reprint/86/1/617
Recommended citation
Collection